Abstract
Proteins have a strong influence on the phenotype and their aberrant expression leads to diseases. MicroRNAs (miRNAs) are short RNA sequences which posttranscriptionally regulate protein expression. This regulation is driven by miRNAs acting as recognition sequences for their target mRNAs within a larger regulatory machinery. A miRNA can have many target mRNAs and an mRNA can be targeted by many miRNAs which makes it difficult to experimentally discover all miRNA–mRNA interactions. Therefore, computational methods have been developed for miRNA detection and miRNA target prediction. An abundance of available computational tools makes selection difficult. Additionally, interactions are not currently the focus of investigation although they more accurately define the regulation than pre-miRNA detection or target prediction could perform alone. We define an interaction including the miRNA source and the mRNA target. We present computational methods allowing the investigation of these interactions as well as how they can be used to extend regulatory pathways. Finally, we present a list of points that should be taken into account when investigating miRNA–mRNA interactions. In the future, this may lead to better understanding of functional interactions which may pave the way for disease marker discovery and design of miRNA-based drugs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Crick F (1970) Central dogma of molecular biology. Nature 227:561–563
Noble D (2012) A theory of biological relativity: no privileged level of causation. Interface Focus 2:55–64. https://doi.org/10.1098/rsfs.2011.0067
Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y (2018) Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol Cancer 17:64. https://doi.org/10.1186/s12943-018-0765-5
Yousef M, Allmer J (2014) miRNomics: microRNA biology and computational analysis. Humana Press, Totowa, NJ
Iwakawa H, Tomari Y (2015) The functions of microRNAs: mRNA decay and translational repression. Trends Cell Biol 25:651–665. https://doi.org/10.1016/j.tcb.2015.07.011
Ørom UA, Nielsen FC, Lund AH (2008) MicroRNA-10a binds the 5’UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell 30:460–471. https://doi.org/10.1016/j.molcel.2008.05.001
Grundhoff A, Sullivan CS (2011) Virus-encoded microRNAs. Virology 411:325–343. https://doi.org/10.1016/j.virol.2011.01.002
Skalsky RL, Cullen BR (2010) Viruses, microRNAs, and host interactions. Annu Rev Microbiol 64:123–141. https://doi.org/10.1146/annurev.micro.112408.134243
Saçar Demirci MD, Bağcı C, Allmer J (2016) Differential expression of Toxoplasma gondii microRNAs in murine and human hosts. In: Non-coding RNAs and inter-kingdom communication. Springer International Publishing, Cham, pp 143–159
Saçar MD, Bağcı C, Allmer J (2014) Computational prediction of MicroRNAs from toxoplasma gondii potentially regulating the hosts’ gene expression. Genomics, Proteomics Bioinformatics 12:228–238. https://doi.org/10.1016/j.gpb.2014.09.002
Liu S, Weiner HL (2016) Control of the gut microbiome by fecal microRNA. Microb cell (Graz, Austria) 3:176–177. https://doi.org/10.15698/mic2016.04.492
Williams MR, Stedtfeld RD, Tiedje JM, Hashsham SA (2017) MicroRNAs-based inter-domain communication between the host and members of the gut microbiome. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.01896
Baker M (2010) MicroRNA profiling: separating signal from noise. Nat Methods 7:687–692. https://doi.org/10.1038/nmeth0910-687
Chugh P, Dittmer DP (2012) Potential pitfalls in microRNA profiling. Wiley Interdiscip Rev RNA 3:601–616
Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X (2013) MicroRNA: function, detection, and bioanalysis. Chem Rev 113:6207–6233. https://doi.org/10.1021/cr300362f
Saçar MD, Allmer J (2014) Machine learning methods for microRNA gene prediction. In: Yousef M, Allmer J (eds) miRNomics: microRNA biology and computational analysis SE-10. Humana Press, pp 177–187
Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, Darnell JC, Darnell RB (2008) HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464–469. https://doi.org/10.1038/nature07488
Hamzeiy H, Allmer J, Yousef M (2014) Computational methods for microRNA target prediction. Methods Mol Biol 1107:207–221. https://doi.org/10.1007/978-1-62703-748-8_12
Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854
Berezikov E, Cuppen E, RH P (2006) Approaches to microRNA discovery. Nat Genet 38(Suppl):S2–S7. https://doi.org/10.1038/ng1794
Lim LP, Lau NC, Weinstein EG, Abdelhakim A, Yekta S, Rhoades MW, Burge CB, Bartel DP (2003) The microRNAs of Caenorhabditis elegans. Genes Dev 17:991–1008. https://doi.org/10.1101/gad.1074403
Wang X, Zhang J, Li F, Gu J, He T, Zhang X, Li Y (2005) MicroRNA identification based on sequence and structure alignment. Bioinformatics 21:3610–3614. https://doi.org/10.1093/bioinformatics/bti562
Nam J-W, Kim J, Kim S-K, Zhang B-T (2006) ProMiR II: a web server for the probabilistic prediction of clustered, nonclustered, conserved and nonconserved microRNAs. Nucleic Acids Res 34:W455–W458. https://doi.org/10.1093/nar/gkl321
Xue C, Li F, He T, Liu G-P, Li Y, Zhang X (2005) Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6:310. https://doi.org/10.1186/1471-2105-6-310
Sewer A, Paul N, Landgraf P, Aravin A, Pfeffer S, Brownstein MJ, Tuschl T, van Nimwegen E, Zavolan M (2005) Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6:267. https://doi.org/10.1186/1471-2105-6-267
Hertel J, Stadler PF (2006) Hairpins in a Haystack: recognizing microRNA precursors in comparative genomics data. Bioinformatics 22:e197–e202. https://doi.org/10.1093/bioinformatics/btl257
Yousef M, Nebozhyn M, Shatkay H, Kanterakis S, Showe LC, Showe MK (2006) Combining multi-species genomic data for microRNA identification using a Naive Bayes classifier. Bioinformatics 22:1325–1334. https://doi.org/10.1093/bioinformatics/btl094
Huang T-H, Fan B, Rothschild MF, Hu Z-L, Li K, Zhao S-H (2007) MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinformatics 8:341. https://doi.org/10.1186/1471-2105-8-341
Jiang P, Wu H, Wang W, Ma W, Sun X, Lu Z (2007) MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res 35:W339–W344. https://doi.org/10.1093/nar/gkm368
Terai G, Komori T, Asai K (2081–2090) Kin T (2007) miRRim: a novel system to find conserved miRNAs with high sensitivity and specificity. https://doi.org/10.1261/rna.655107.been
Friedländer MR, Chen W, Adamidi C, Maaskola J, Einspanier R, Knespel S, Rajewsky N (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26:407–415. https://doi.org/10.1038/nbt1394
Hackenberg M, Sturm M, Langenberger D, Falcón-Pérez JM, Aransay AM (2009) miRanalyzer: a microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res 37:W68–W76. https://doi.org/10.1093/nar/gkp347
Oulas A, Boutla A, Gkirtzou K, Reczko M, Kalantidis K, Poirazi P (2009) Prediction of novel microRNA genes in cancer-associated genomic regions—a combined computational and experimental approach. Nucleic Acids Res 37:3276–3287. https://doi.org/10.1093/nar/gkp120
Kadri S, Hinman V, Benos PV (2009) HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models. BMC Bioinformatics 10(Suppl 1):S35. https://doi.org/10.1186/1471-2105-10-S1-S35
Mathelier A, Carbone A (2010) MIReNA: finding microRNAs with high accuracy and no learning at genome scale and from deep sequencing data. Bioinformatics 26:2226–2234. https://doi.org/10.1093/bioinformatics/btq329
Wu Y, Wei B, Liu H, Li T, Rayner S (2011) MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics 12:107. https://doi.org/10.1186/1471-2105-12-107
Tempel S, Tahi F (2012) A fast ab-initio method for predicting miRNA precursors in genomes. Nucleic Acids Res 40:e80. https://doi.org/10.1093/nar/gks146
Gao D, Middleton R, Rasko JEJ, Ritchie W (2013) miREval 2.0: a web tool for simple microRNA prediction in genome sequences. Bioinformatics 29:3225–3226. https://doi.org/10.1093/bioinformatics/btt545
Lei J, Sun Y (2014) miR-PREFeR: an accurate, fast and easy-to-use plant miRNA prediction tool using small RNA-Seq data. Bioinformatics 30:2837–2839. https://doi.org/10.1093/bioinformatics/btu380
Tran VDT, Tempel S, Zerath B, Zehraoui F, Tahi F (2015) miRBoost: boosting support vector machines for microRNA precursor classification. RNA 21:775–785. https://doi.org/10.1261/rna.043612.113
Chen J, Wang X, Liu B (2016) iMiRNA-SSF: improving the identification of microRNA precursors by combining negative sets with different distributions. Sci Rep 6:19062. https://doi.org/10.1038/srep19062
Saçar Demirci MD, Baumbach J, Allmer J (2017) On the performance of pre-microRNA detection algorithms. Nat Commun 8:330. https://doi.org/10.1038/s41467-017-00403-z
Lu Yi, Aras AS, Halushka MK (2018) miRge 2.0: an updated tool to comprehensively analyze microRNA sequencing data, bioRxiv, https://doi.org/10.1101/250779
Gomes CPC, Cho J-H, Hood L, Franco OL, Pereira RW, Wang K (2013) A review of computational tools in microRNA discovery. Front Genet 4:81. https://doi.org/10.3389/fgene.2013.00081
van der Burgt A, Fiers MWJE, Nap J-P, van Ham RCHJ (2009) In silico miRNA prediction in metazoan genomes: balancing between sensitivity and specificity. BMC Genomics 10:204. https://doi.org/10.1186/1471-2164-10-204
Hofacker IL (2003) Vienna RNA secondary structure server. Nucleic Acids Res 31:3429–3431. https://doi.org/10.1093/nar/gkg599
Zeng C, Wang W, Zheng Y, Chen X, Bo W, Song S, Zhang W, Peng M (2010) Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants. Nucleic Acids Res 38:981–995. https://doi.org/10.1093/nar/gkp1035
Liang H, Li W-H (2009) Lowly expressed human microRNA genes evolve rapidly. Mol Biol Evol 26:1195–1198. https://doi.org/10.1093/molbev/msp053
Saçar Demirci MD, Allmer J (2017) Delineating the impact of machine learning elements in pre-microRNA detection. PeerJ 5:e3131. https://doi.org/10.7717/peerj.3131
Marcinkowska M, Szymanski M, Krzyzosiak WJ, Kozlowski P (2011) Copy number variation of microRNA genes in the human genome. BMC Genomics 12:183. https://doi.org/10.1186/1471-2164-12-183
Erson-Bensan AE (2014) Introduction to microRNAs in biological systems. Methods Mol Biol 1107:1–14. https://doi.org/10.1007/978-1-62703-748-8_1
Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp A-C, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141. https://doi.org/10.1016/j.cell.2010.03.009
Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 460:479–486. https://doi.org/10.1038/nature08170.Ago
Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153:654–665. https://doi.org/10.1016/j.cell.2013.03.043
Hsu S-D, Tseng Y-T, Shrestha S, Lin Y-L, Khaleel A, Chou C-H, Chu C-F, Huang H-Y, Lin C-M, Ho S-Y, Jian T-Y, Lin F-M, Chang T-H, Weng S-L, Liao K-W, Liao I-E, Liu C-C, Huang H-D (2014) miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res 42:D78–D85. https://doi.org/10.1093/nar/gkt1266
Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas T, Hatzigeorgiou AG (2012) TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 40:D222–D229. https://doi.org/10.1093/nar/gkr1161
Krüger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34:W451–W454. https://doi.org/10.1093/nar/gkl243
Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, Rajewsky N (2005) Combinatorial microRNA target predictions. Nat Genet 37:495–500. https://doi.org/10.1038/ng1536
Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20. https://doi.org/10.1016/j.cell.2004.12.035
Miranda KC, Huynh T, Tay Y, Ang Y-S, Tam W-L, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203–1217. https://doi.org/10.1016/j.cell.2006.07.031
Sethupathy P, Corda B, Hatzigeorgiou AG (2006) TarBase: a comprehensive database of experimentally supported animal microRNA targets. RNA 12:192–197. https://doi.org/10.1261/rna.2239606
Yousef M, Jung S, Kossenkov AV, Showe LC, Showe MK (2007) Naïve Bayes for microRNA target predictions—machine learning for microRNA targets. Bioinformatics 23:2987–2992. https://doi.org/10.1093/bioinformatics/btm484
Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1284. https://doi.org/10.1038/ng2135
Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Simossis VA, Sethupathy P, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG (2009) Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics 10:295. https://doi.org/10.1186/1471-2105-10-295
Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T (2009) miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 37:D105–D110. https://doi.org/10.1093/nar/gkn851
Hsu S-D, Lin F-M, Wu W-Y, Liang C, Huang W-C, Chan W-L, Tsai W-T, Chen G-Z, Lee C-J, Chiu C-M, Chien C-H, Wu M-C, Huang C-Y, Tsou A-P, Huang H-D (2011) miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic Acids Res 39:D163–D169. https://doi.org/10.1093/nar/gkq1107
Dweep H, Sticht C, Pandey P, Gretz N (2011) miRWalk—database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 44:839–847. https://doi.org/10.1016/j.jbi.2011.05.002
Elefant N, Berger A, Shein H, Hofree M, Margalit H, Altuvia Y (2011) RepTar: a database of predicted cellular targets of host and viral miRNAs. Nucleic Acids Res 39:D188–D194. https://doi.org/10.1093/nar/gkq1233
Li J-H, Liu S, Zhou H, Qu L-H, Yang J-H (2014) starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97. https://doi.org/10.1093/nar/gkt1248
Chiu H-S, Llobet-Navas D, Yang X, Chung W-J, Ambesi-Impiombato A, Iyer A, Kim HR, Seviour EG, Luo Z, Sehgal V, Moss T, Lu Y, Ram P, Silva J, Mills GB, Califano A, Sumazin P (2015) Cupid: simultaneous reconstruction of microRNA-target and ceRNA networks. Genome Res 25:257–267. https://doi.org/10.1101/gr.178194.114
Bandyopadhyay S, Ghosh D, Mitra R, Zhao Z (2015) MBSTAR: multiple instance learning for predicting specific functional binding sites in microRNA targets. Sci Rep 5:8004. https://doi.org/10.1038/srep08004
Liu S, Li J-H, Wu J, Zhou K-R, Zhou H, Yang J-H, Qu L-H (2015) StarScan: a web server for scanning small RNA targets from degradome sequencing data. Nucleic Acids Res 43:W480–W486. https://doi.org/10.1093/nar/gkv524
Riffo-Campos Á, Riquelme I, Brebi-Mieville P (2016) Tools for sequence-based miRNA target prediction: what to choose? Int J Mol Sci 17:1987. https://doi.org/10.3390/ijms17121987
Lewis BP, Shih I, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798
Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1. https://doi.org/10.1186/gb-2003-5-1-r1
Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18:1165–1178. https://doi.org/10.1101/gad.1184704
Peterson SM, JA T, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB (2014) Common features of microRNA target prediction tools. Front Genet 5:23. https://doi.org/10.3389/fgene.2014.00023
Yousef M, Allmer J, Khalifa W (2016) Feature selection for microRNA target prediction comparison of one-class feature selection methodologies. In: BIOINFORMATICS 2016—7th international conference on bioinformatics models, methods and algorithms, Proceedings; Part of 9th international joint conference on biomedical engineering systems and technologies, BIOSTEC 2016
John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2:e363. https://doi.org/10.1371/journal.pbio.0020363
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10:1507–1517. https://doi.org/10.1261/rna.5248604
Lai EC (2004) Predicting and validating microRNA targets. Genome Biol 5:115. https://doi.org/10.1186/gb-2004-5-9-115
Yousef M, Nigatu D, Levy D, Allmer J, Henkel W (2017) Categorization of species based on their microRNAs employing sequence motifs, information-theoretic sequence feature extraction, and k-mers. EURASIP J Adv Signal Process 2017:70. https://doi.org/10.1186/s13634-017-0506-8
Heyn J, Hinske LC, Ledderose C, Limbeck E, Kreth S (2013) Experimental miRNA target validation. Methods Mol Biol 936:83–90. https://doi.org/10.1007/978-1-62703-083-0_7
Thomson DW, Bracken CP, Goodall GJ (2011) Experimental strategies for microRNA target identification. Nucleic Acids Res 39:6845–6853. https://doi.org/10.1093/nar/gkr330
Chou C-H, Shrestha S, Yang C-D, Chang N-W, Lin Y-L, Liao K-W, Huang W-C, Sun T-H, Tu S-J, Lee W-H, Chiew M-Y, Tai C-S, Wei T-Y, Tsai T-R, Huang H-T, Wang C-Y, Wu H-Y, Ho S-Y, Chen P-R, Chuang C-H, Hsieh P-J, Wu Y-S, Chen W-L, Li M-J, Wu Y-C, Huang X-Y, Ng FL, Buddhakosai W, Huang P-C, Lan K-C, Huang C-Y, Weng S-L, Cheng Y-N, Liang C, Hsu W-L, Huang H-D (2018) miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 46:D296–D302. https://doi.org/10.1093/nar/gkx1067
Saçar MD, Allmer J (2013) Current limitations for computational analysis of miRNAs in cancer. Pakistan J Clin Biomed Res 1:3–5
Koo J, Zhang J, Chaterji S (2018) Tiresias: context-sensitive approach to decipher the presence and strength of microRNA regulatory interactions. Theranostics 8:277–291. https://doi.org/10.7150/thno.22065
Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139. https://doi.org/10.1038/nrm2632
Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33:2697–2706. https://doi.org/10.1093/nar/gki567
Mechtler P, Johnson S, Slabodkin H, Cohanim AB, Brodsky L, Kandel ES (2017) The evidence for a microRNA product of human DROSHA gene. RNA Biol 14:1508–1513. https://doi.org/10.1080/15476286.2017.1342934
Acar İE, Saçar Demirci MD, Groß U, Allmer J (2018) The expressed MicroRNA—mRNA interactions of Toxoplasma gondii. Front Microbiol 8. https://doi.org/10.3389/fmicb.2017.02630
Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucleic Acids Res 39:D19–D21. https://doi.org/10.1093/nar/gkq1019
Fei Y, Wang R, Li H, Liu S, Zhang H, Huang J (2017) DPMIND: degradome-based Plant MiRNA-target interaction and network database. Bioinformatics. https://doi.org/10.1093/bioinformatics/btx824
Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42:D68–D73. https://doi.org/10.1093/nar/gkt1181
Brinkrolf C, Janowski SJ, Kormeier B, Lewinski M, Hippe K, Borck D, Hofestädt R (2014) VANESA—a software application for the visualization and analysis of networks in system biology applications. J Integr Bioinform 11:239. https://doi.org/10.2390/biecoll-jib-2014-239
Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G, Caudy M, Garapati P, Gillespie M, Kamdar MR, Jassal B, Jupe S, Matthews L, May B, Palatnik S, Rothfels K, Shamovsky V, Song H, Williams M, Birney E, Hermjakob H, Stein L, D’Eustachio P (2014) The Reactome pathway knowledgebase. Nucleic Acids Res 42:D472–D477. https://doi.org/10.1093/nar/gkt1102
Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30
Hamzeiy H, Suluyayla R, Brinkrolf C, Janowski SJ, Hofestaedt R, Allmer J (2017) Visualization and analysis of microRNAs within KEGG pathways using VANESA. J Integr Bioinform 14. https://doi.org/10.1515/jib-2016-0004
Le DH, Verbeke L, Son LH, Chu DT, Pham VH (2017) Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs. BMC Bioinformatics 18:1–13. https://doi.org/10.1186/s12859-017-1924-1
Zeng X, Zhang X, Zou Q (2016) Integrative approaches for predicting microRNA function and prioritizing disease-related microRNA using biological interaction networks. Brief Bioinform 17:193–203. https://doi.org/10.1093/bib/bbv033
Jiang Q, Hao Y, Wang G, Juan L, Zhang T, Teng M, Liu Y, Wang Y (2010) Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Syst Biol 4(Suppl 1):S2. https://doi.org/10.1186/1752-0509-4-S1-S2
Jiang Q, Hao Y, Wang G, Zhang T, Wang Y (2010) Weighted network-based inference of human microRNA-disease associations. In: 2010 Fifth international conference on frontier of computer science and technology. IEEE, pp 431–435
Wang D, Wang J, Lu M, Song F, Cui Q (2010) Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26:1644–1650. https://doi.org/10.1093/bioinformatics/btq241
Xu J, Li C-X, Li Y-S, Lv J-Y, Ma Y, Shao T-T, Xu L-D, Wang Y-Y, Du L, Zhang Y-P, Jiang W, Li C-Q, Xiao Y, Li X (2011) MiRNA-miRNA synergistic network: construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res 39:825–836. https://doi.org/10.1093/nar/gkq832
Chen X, Yan G-Y (2015) Semi-supervised learning for potential human microRNA-disease associations inference. Sci Rep 4:5501. https://doi.org/10.1038/srep05501
Kandhro AH, Shoombuatong W, Nantasenamat C, Prachayasittikul V, Nuchnoi P (2017) The microRNA interaction network of lipid diseases. Front Genet 8:1–14. https://doi.org/10.3389/fgene.2017.00116
Honardoost MA, Naghavian R, Ahmadinejad F, Hosseini A, Ghaedi K (2015) Integrative computational mRNA-miRNA interaction analyses of the autoimmune-deregulated miRNAs and well-known Th17 differentiation regulators: an attempt to discover new potential miRNAs involved in Th17 differentiation. Gene 572:153–162. https://doi.org/10.1016/j.gene.2015.08.043
Robinson JM, Henderson WA (2018) Modelling the structure of a ceRNA-theoretical, bipartite microRNA-mRNA interaction network regulating intestinal epithelial cellular pathways using R programming. BMC Res Notes 11:1–7. https://doi.org/10.1186/s13104-018-3126-y
van den Bout I, Divecha N (2009) PIP5K-driven PtdIns(4,5)P2 synthesis: regulation and cellular functions. J Cell Sci 122:3837–3850. https://doi.org/10.1242/jcs.056127
Han J, Pedersen JS, Kwon SC, Belair CD, Kim Y, Yeom K, Yang W, Haussler D, Blelloch R, Kim VN (2009) Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136:75–84. https://doi.org/10.1016/j.cell.2008.10.053
Crews ST, Pearson JC (2009) Transcriptional autoregulation in development. Curr Biol 19:R241–R246. https://doi.org/10.1016/j.cub.2009.01.015
Cargnin F, Flora A, Di Lascio S, Battaglioli E, Longhi R, Clementi F, Fornasari D (2005) PHOX2B regulates its own expression by a transcriptional auto-regulatory mechanism. J Biol Chem 280:37439–37448. https://doi.org/10.1074/jbc.M508368200
Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, Goodall GJ (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res 68:7846–7854. https://doi.org/10.1158/0008-5472.CAN-08-1942
Osella M, Bosia C, Corá D, Caselle M (2011) The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput Biol 7. https://doi.org/10.1371/journal.pcbi.1001101
Tsang J, Zhu J, van Oudenaarden A (2007) MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 26:753–767. https://doi.org/10.1016/j.molcel.2007.05.018
Zhang HM, Kuang S, Xiong X, Gao T, Liu C, Guo AY (2013) Transcription factor and microRNA co-regulatory loops: Important regulatory motifs in biological processes and diseases. Brief Bioinform 16:45–58. https://doi.org/10.1093/bib/bbt085
Yousef M, Trinh HV, Allmer J (2014) Intersection of microRNA and gene regulatory networks and their implication in cancer. Curr Pharm Biotechnol 15:445–454. https://doi.org/10.2174/1389201015666140519120855
Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862
Hamzeiy H, Suluyayla R, Brinkrolf C, Janowski SJ, Hofestädt R, Allmer J (2018) Visualization and analysis of miRNAs implicated in amyotrophic lateral sclerosis within gene regulatory pathways. Stud Heal Technol Inform 253:183–187
Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, Castagnoli L, Cesareni G (2012) MINT, the molecular interaction database: 2012 Update. Nucleic Acids Res 40
Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C, Jimenez RC, Khadake J, Mahadevan U, Masson P, Pedruzzi I, Pfeiffenberger E, Porras P, Raghunath A, Roechert B, Orchard S, Hermjakob H (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40
Liu B, Hu B (2010) HPRD: a high performance RDF database. Int J Parallel Emergent Distrib Syst 25:123–133
Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten J-W, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, Heringa J, ’t Hoen PA, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone S-A, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B (2016) The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3:160018. https://doi.org/10.1038/sdata.2016.18
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Saçar Demirci, M.D., Yousef, M., Allmer, J. (2019). Computational Prediction of Functional MicroRNA–mRNA Interactions. In: Lai, X., Gupta, S., Vera, J. (eds) Computational Biology of Non-Coding RNA. Methods in Molecular Biology, vol 1912. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8982-9_7
Download citation
DOI: https://doi.org/10.1007/978-1-4939-8982-9_7
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-8981-2
Online ISBN: 978-1-4939-8982-9
eBook Packages: Springer Protocols