Abstract
Noncoding RNAs (ncRNAs) play critical roles in essential cell fate decisions. However, the exact molecular mechanisms underlying ncRNA-mediated bistable switches remain elusive and controversial. In recent years, systematic mathematical and quantitative experimental analyses have made significant contributions on elucidating the molecular mechanisms of controlling ncRNA-mediated cell fate decision processes. In this chapter, we review and summarize the general framework of mathematical modeling of ncRNA in a pedagogical way and the application of this general framework on real biological processes. We discuss the emerging properties resulting from the reciprocal regulation between mRNA, miRNA, and competing endogenous mRNA (ceRNA), as well as the role of mathematical modeling of ncRNA in synthetic biology. Both the positive feedback loops between ncRNAs and transcription factors and the emerging properties from the miRNA-mRNA reciprocal regulation enable bistable switches to direct cell fate decision.
Key words
- Ultrasensitivity
- Competing endogenous mRNA
- Posttranscriptional
- Mathematical modeling
- Bistability
- Cell fate decision
This is a preview of subscription content, access via your institution.
Buying options




References
Carninci P et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563
Birney E et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816
Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–263
Pauli A, Rinn JL, Schier AF (2011) Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet 12:136–149
Davis GM, Haas MA, Pocock R (2015) MicroRNAs: not “fine-tuners” but key regulators of neuronal development and function. Front Neurol 6:245. https://doi.org/10.3389/fneur.2015.00245
Zhang J, Ma L (2012) MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev 31:653–662
Gregory PA, Bracken CP, Bert AG, Goodall GJ (2008) MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7:3112–3117
Guo F, Kerrigan BCP, Yang D, Hu L, Shmulevich I, Sood AK, Xue F, Zhang W (2014) Post-transcriptional regulatory network of epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions. J Hematol Oncol 7:19
Jovanovic M, Hengartner MO (2006) miRNAs and apoptosis: RNAs to die for. Oncogene 25:6176–6187
Shurin MR (2010) MicroRNAs are invading the tumor microenvironment: fibroblast microRNAs regulate tumor cell motility and invasiveness. Cell Cycle 9:4430–4430
Bao X, Zhu X, Liao B, Benda C, Zhuang Q, Pei D, Qin B, Esteban MA (2013) MicroRNAs in somatic cell reprogramming. Curr Opin Cell Biol 25:208–214
Lüningschrör P, Hauser S, Kaltschmidt B, Kaltschmidt C (2013) MicroRNAs in pluripotency reprogramming and cell fate induction. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1833:1894–1903
Flynn RA, Chang HY (2014) Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 14:752–761
Iorio MV, Croce CM (2012) MicroRNA dysregulation in cancer: diagnostics monitoring and therapeutics. A comprehensive review. EMBO Mol Med 4:143–159
Bracken CP, Scott HS, Goodall GJ (2016) A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet 17:719–732
Tan L, Yu J-T, Tan L (2014) Causes and consequences of MicroRNA dysregulation in neurodegenerative diseases. Mol Neurobiol 51:1249–1262
Tian X-J, Zhang H, Xing J (2013) Coupled reversible and irreversible bistable switches underlying TGFβ-induced epithelial to mesenchymal transition. Biophys J 105:1079–1089
Zhang J, Tian X-J, Zhang H, Teng Y, Li R, Bai F, Elankumaran S, Xing J (2014) TGF-β-induced epithelial-to-mesenchymal transition proceeds through stepwise activation of multiple feedback loops. Sci Signal 7:ra91
Lu M, Jolly MK, Levine H, Onuchic JN, Ben-Jacob E (2013) MicroRNA-based regulation of epithelial-hybrid-mesenchymal fate determination. Proc Natl Acad Sci U S A 110:18144–18149
Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB (2008) MicroRNA regulation of a cancer network: consequences of the feedback loops involving miR-17-92 E2F, and Myc. Proc Natl Acad Sci U S A 105:19678–19683
Sengupta D, Govindaraj V, Kar S (2017) Subtle alteration in microRNA dynamics accounts for differential nature of cellular proliferation. https://doi.org/10.1101/214429
Zhou C-H, Zhang X-P, Liu F, Wang W (2014) Involvement of miR-605 and miR-34a in the DNA damage response promotes apoptosis induction. Biophys J 106:1792–1800
Lai X, Wolkenhauer O, Vera J (2012) Modeling miRNA regulation in cancer signaling systems: miR-34a regulation of the p53/Sirt1 signaling module. Methods Mol Biol 880:87–108
Gérard C, Gonze D, Lemaigre F, Novák B (2014) A model for the epigenetic switch linking inflammation to cell transformation: deterministic and stochastic approaches. PLoS Comput Biol 10:e1003455
Lee J, Lee J, Farquhar KS, Yun J, Frankenberger CA, Bevilacqua E, Yeung K, Kim E-J, Balazsi G, Rosner MR (2014) Network of mutually repressive metastasis regulators can promote cell heterogeneity and metastatic transitions. Proc Natl Acad Sci U S A 111:E364–E373
Milo R (2002) Network motifs: simple building blocks of complex networks. Science 298:824–827
Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461
Ferrell JE, Xiong W (2001) Bistability in cell signaling: how to make continuous processes discontinuous and reversible processes irreversible. Chaos 11:227
Tyson JJ, Chen KC, Novak B (2003) Sniffers buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15:221–231
Novák B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9:981–991
Ma W, Trusina A, El-Samad H, Lim WA, Tang C (2009) Defining network topologies that can achieve biochemical adaptation. Cell 138:760–773
Tsai TY-C, Choi YS, Ma W, Pomerening JR, Tang C, Ferrell JE (2008) Robust tunable biological oscillations from interlinked positive and negative feedback loops. Science 321:126–129
Tian X-J, Zhang X-P, Liu F, Wang W (2009) Interlinking positive and negative feedback loops creates a tunable motif in gene regulatory networks. Phys Rev E Stat Nonlin Soft Matter Phys 80(1 Pt 1):011926. https://doi.org/10.1103/physreve.80.011926
Suel GM, Kulkarni RP, Dworkin J, Garcia-Ojalvo J, Elowitz MB (2007) Tunability and noise dependence in differentiation dynamics. Science 315:1716–1719
Brandman O (2005) Interlinked fast and slow positive feedback loops drive reliable cell decisions. Science 310:496–498
Zhang X-P, Cheng Z, Liu F, Wang W (2007) Linking fast and slow positive feedback loops creates an optimal bistable switch in cell signaling. Phys Rev E Stat Nonlin Soft Matter PhysPhys Rev E 76(3 Pt 1):031924. https://doi.org/10.1103/physreve.76.031924
Siemens H, Jackstadt R, Hünten S, Kaller M, Menssen A, Götz U, Hermeking H (2011) miR-34 and SNAIL form a double-negative feedback loop to regulate epithelial-mesenchymal transitions. Cell Cycle 10:4256–4271
Brabletz S, Brabletz T (2010) The ZEB/miR-200 feedback loopa motor of cellular plasticity in development and cancer? EMBO Rep 11:670–677
Yamakuchi M, Lowenstein CJ (2009) MiR-34 SIRT1, and p53: The feedback loop. Cell Cycle 8:712–715
Rokavec M, Ö-ner MG, Li H et al (2014) IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Investig 124:1853–1867
Wu H, Wang G, Wang Z, An S, Ye P, Luo S (2016) A negative feedback loop between miR-200b and the nuclear factor-κB pathway via IKBKB/IKK-β in breast cancer cells. FEBS J 283:2259–2271
Lu Y-X, Yuan L, Xue X-L, Zhou M, Liu Y, Zhang C, Li J-P, Zheng L, Hong M, Li X-N (2014) Regulation of colorectal carcinoma stemness growth, and metastasis by an miR-200c-Sox2-negative feedback loop mechanism. Clin Cancer Res 20:2631–2642
Kundu ST, Byers LA, Peng DH, Roybal JD, Diao L, Wang J, Tong P, Creighton CJ, Gibbons DL (2015) The miR-200 family and the miR-183~96~182 cluster target Foxf2 to inhibit invasion and metastasis in lung cancers. Oncogene 35:173–186
Ding X, Park SI, McCauley LK, Wang C-Y (2013) Signaling between Transforming Growth Factor β (TGF-β) and Transcription Factor SNAI2 Represses Expression of MicroRNA miR-203 to Promote Epithelial-Mesenchymal Transition and Tumor Metastasis. J Biol Chem 288:10241–10253
Yang X, Lin X, Zhong X et al (2010) Double-negative feedback loop between reprogramming factor LIN28 and microRNA let-7 regulates aldehyde dehydrogenase 1-positive cancer stem cells. Cancer Res 70:9463–9472
Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-κB Lin28, Let-7 MicroRNA and IL6 links inflammation to cell transformation. Cell 139:693–706
Pasquinelli AE (2012) MicroRNAs and their targets: recognition regulation and an emerging reciprocal relationship. Nat Rev Genet 13:271–282
Mukherji S, Ebert MS, Zheng GXY, Tsang JS, Sharp PA, van Oudenaarden A (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43:854–859
Tian X-J, Zhang H, Zhang J, Xing J (2016) Reciprocal regulation between mRNA and microRNA enables a bistable switch that directs cell fate decisions. FEBS Lett 590:3443–3455
Markevich NI, Hoek JB, Kholodenko BN (2004) Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol 164:353–359
Ortega F, Garcés JL, Mas F, Kholodenko BN, Cascante M (2006) Bistability from double phosphorylation in signal transduction. FEBS J 273:3915–3926
Grande MT, Sánchez-Laorden B, López-Blau C, Frutos CAD, Boutet A, Arévalo M, Rowe RG, Weiss SJ, López-Novoa JM, Nieto MA (2015) Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat Med 21:989–997
Lovisa S, LeBleu VS, Tampe BÃ et al (2015) Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat Med 21:998–1009
Voon DC, Huang RY, Jackson RA, Thiery JP (2017) The EMT spectrum and therapeutic opportunities. Mol Oncol 11:878–891
Huang RY-J, Wong MK, Tan TZ et al (2013) An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor saracatinib (AZD0530). Cell Death Dis 4:e915
Tan TZ, Miow QH, Miki Y, Noda T, Mori S, Huang RY-J, Thiery JP (2014) Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med 6:1279–1293
Figliuzzi M, Marinari E, Martino AD (2013) MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys J 104:1203–1213
Figliuzzi M, De Martino A, Marinari E (2014) RNA-based regulation: dynamics and response to perturbations of competing RNAs. Biophys J 107:1011–1022
Yuan Y, Liu B, Xie P, Zhang MQ, Li Y, Xie Z, Wang X (2015) Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc Natl Acad Sci U S A 112:3158–3163
Yuan Y, Ren X, Xie Z, Wang X (2016) A quantitative understanding of microRNA-mediated competing endogenous RNA regulation. Quant Biol 4:47–57
Bloom RJ, Winkler SM, Smolke CD (2015) Synthetic feedback control using an RNAi-based gene-regulatory device. J Biol Eng 9:5. https://doi.org/10.1186/s13036-015-0002-3
Wroblewska L, Kitada T, Endo K, Siciliano V, Stillo B, Saito H, Weiss R (2015) Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery. Nat Biotechnol 33:839–841
Miki K, Endo K, Takahashi S et al (2015) Efficient detection and purification of cell populations using synthetic MicroRNA switches. Cell Stem Cell 16:699–711
Yu M, Bardia A, Wittner BS et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339:580–584
Ilina O, Friedl P (2009) Mechanisms of collective cell migration at a glance. J Cell Sci 122:3203–3208
Morel M, Shtrahman R, Rotter V, Nissim L, Bar-Ziv RH (2016) Cellular heterogeneity mediates inherent sensitivityspecificity tradeoff in cancer targeting by synthetic circuits. Proc Natl Acad Sci U S A 113:8133–8138
Mitchell PS, Parkin RK, Kroh EM et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518
Fischer KR, Durrans A, Lee S et al (2015) Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 527:472–476
Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, Wu C-C, LeBleu VS, Kalluri R (2015) Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 527:525–530
Yoon J-H, Abdelmohsen K, Gorospe M (2014) Functional interactions among microRNAs and long noncoding RNAs. Semin Cell Dev Biol 34:9–14
Tay Y, Rinn J, Pandolfi PP (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature 505:344–352
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Tian, XJ., Ferro, M.V., Goetz, H. (2019). Modeling ncRNA-Mediated Circuits in Cell Fate Decision. In: Lai, X., Gupta, S., Vera, J. (eds) Computational Biology of Non-Coding RNA. Methods in Molecular Biology, vol 1912. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8982-9_16
Download citation
DOI: https://doi.org/10.1007/978-1-4939-8982-9_16
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-8981-2
Online ISBN: 978-1-4939-8982-9
eBook Packages: Springer Protocols