Skip to main content

One-Tube Multicolor Flow Cytometry Assay (OTMA) for Comprehensive Immunophenotyping of Peripheral Blood

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1904))

Abstract

Recent improvements in the flow cytometry technology allow the determination of the general immune status through the development of multicolor immunofluorescence panels. The one-tube multicolor flow cytometry assay (OTMA) that is presented here identifies 20 different, clinically relevant immune cell subsets and three common activation markers. Thereby, a comprehensive immune status that covers all major immune cells is easily obtained.

The assay is suitable for every common three lasers and 10 color flow cytometer and includes the application of 15 different antibodies. Furthermore, the assay requires only 100 μL of EDTA-treated whole-blood and less than 40 min for sample preparation. By being easily adaptable to individual requirements and by additionally determining absolute cell counts, the assay is well-suited for translational research in clinical trials.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Galon J, Angell HK, Bedognetti D, Marincola FM (2013) The continuum of cancer immunosurveillance: prognostic, predictive, and mechanistic signatures. Immunity 39(1):11–26. https://doi.org/10.1016/j.immuni.2013.07.008

    Article  CAS  Google Scholar 

  2. Chattopadhyay PK, Roederer M (2012) Cytometry: today’s technology and tomorrow’s horizons. Methods 57(3):251–258. https://doi.org/10.1016/j.ymeth.2012.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moreira A, Leisgang W, Schuler G, Heinzerling L (2017) Eosinophilic count as a biomarker for prognosis of melanoma patients and its importance in the response to immunotherapy. Immunotherapy 9(2):115–121. https://doi.org/10.2217/imt-2016-0138

    Article  CAS  PubMed  Google Scholar 

  4. Bjoern J, Brimnes MK, Andersen MH, Thor Straten P, Svane IM (2011) Changes in peripheral blood level of regulatory T cells in patients with malignant melanoma during treatment with dendritic cell vaccination and low-dose IL-2. Scand J Immunol 73(3):222–233. https://doi.org/10.1111/j.1365-3083.2010.02494.x

    Article  CAS  PubMed  Google Scholar 

  5. Tokuno KH, Shoichi H, Yoshino S, Yoshida S, Oka M (2009) Increased prevalence of regulatory T-cells in the peripheral blood of patients with gastrointestinal cancer. Anticancer Res 29(5):1527–1532

    PubMed  Google Scholar 

  6. Ho CMM, Philip L, Wallace PK, Zhang Y, Fora A, Mellors P, Tario JD, McCarthy BLS, Chen GL, Holstein SA, Balderman SR, Xuefang C, Paiva B, Hahn T (2017) Immune signatures associated with improved progression-free and overall survival for myeloma patients treated with AHSCT. Blood Adv 1(15):1056–1066. https://doi.org/10.1182/bloodadvances.2017005447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shirota Y, Yarboro C, Fischer R, Pham TH, Lipsky P, Illei GG (2013) Impact of anti-interleukin-6 receptor blockade on circulating T and B cell subsets in patients with systemic lupus erythematosus. Ann Rheum Dis 72(1):118–128. https://doi.org/10.1136/annrheumdis-2012-201310

    Article  CAS  PubMed  Google Scholar 

  8. Jarry A, Cerf-Bensussan N, Brousse N, Selz F, Guy-Grand D (1990) Subsets of CD3+ (T cell receptor alp or y/6) and CD3-lymphocytes isolated from normal human gut epithelium display phenotypical features different from their counterparts in peripheral blood. Eur J Immunol 20(5):1097–1103. https://doi.org/10.1002/eji.1830200523

    Article  CAS  PubMed  Google Scholar 

  9. Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19:275–290. https://doi.org/10.1146/annurev.immunol.19.1.275

    Article  CAS  PubMed  Google Scholar 

  10. Pan T, Zhou T, Li L, Liu Z, Chen Y, Mao E, Li M, Qu H, Liu J (2017) Monocyte programmed death ligand-1 expression is an early marker for predicting infectious complications in acute pancreatitis. Crit Care 21(1):186. https://doi.org/10.1186/s13054-017-1781-3

    Article  PubMed  PubMed Central  Google Scholar 

  11. Knudsen JH, Court-payen M, Kjærsgaard E, Christensen NJ (2009) Lymphocyte subset composition in peripheral blood from normal subjects may be influenced by both spleen size and plasma norepinephrine. Scand J Clin Lab Invest 55(7):643–648. https://doi.org/10.3109/00365519509110264

    Article  Google Scholar 

  12. Cheadle WG, Pemberton RM, Robinson D, Livingston DH, Rodriguez JL, Polk HC Jr (1993) Lymphocyte subset responses to trauma and sepsis. J Trauma 35(6):844–849

    Article  CAS  Google Scholar 

  13. Monserrat J, de Pablo R, Diaz-Martin D, Rodriguez-Zapata M, de la Hera A, Prieto A, Alvarez-Mon M (2013) Early alterations of B cells in patients with septic shock. Crit Care 17(3):R105. https://doi.org/10.1186/cc12750

    Article  PubMed  PubMed Central  Google Scholar 

  14. O’Doherty U, Peng M, Gezelter S, Swiggard WJ, Betjes M, Bhardwaj N, Steinman RM (1994) Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 82(3):487–493

    PubMed  PubMed Central  Google Scholar 

  15. Chirumbolo S, Bjorklund G, Vella A (2017) Using a CD45dim/CD123bright/HLA-DRneg phenotyping protocol to gate basophils in FC for airway allergy. CD123 does not decrease. Adv Respir Med 85(4):193–201. https://doi.org/10.5603/ARM.2017.0032

    Article  PubMed  Google Scholar 

  16. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, Fazekas de St Groth B, Clayberger C, Soper DM, Ziegler SF, Bluestone JA (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203(7):1701–1711. https://doi.org/10.1084/jem.20060772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S, Landay A, Solomon M, Selby W, Alexander SI, Nanan R, Kelleher A, Fazekas de St Groth B (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 203(7):1693–1700. https://doi.org/10.1084/jem.20060468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Al Omar SY, Marshall E, Middleton D, Christmas SE (2012) Increased numbers but functional defects of CD56+CD3+ cells in lung cancer. Int Immunol 24(7):409–415. https://doi.org/10.1093/intimm/dxr122

    Article  CAS  PubMed  Google Scholar 

  19. Bjorkstrom NK, Gonzalez VD, Malmberg KJ, Falconer K, Alaeus A, Nowak G, Jorns C, Ericzon BG, Weiland O, Sandberg JK, Ljunggren HG (2008) Elevated numbers of Fc RIIIA+ (CD16+) effector CD8 T cells with NK cell-like function in chronic hepatitis C virus infection. J Immunol 181(6):4219–4228. https://doi.org/10.4049/jimmunol.181.6.4219

    Article  PubMed  Google Scholar 

  20. Michel JJ, Turesson C, Lemster B, Atkins SR, Iclozan C, Bongartz T, Wasko MC, Matteson EL, Vallejo AN (2007) CD56-expressing T cells that have features of senescence are expanded in rheumatoid arthritis. Arthritis Rheum 56(1):43–57. https://doi.org/10.1002/art.22310

    Article  PubMed  Google Scholar 

  21. Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, Segura E, Tussiwand R, Yona S (2014) Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 14(8):571–578. https://doi.org/10.1038/nri3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Montaldo E, Del Zotto G, Della Chiesa M, Mingari MC, Moretta A, De Maria A, Moretta L (2013) Human NK cell receptors/markers: a tool to analyze NK cell development, subsets and function. Cytometry A 83(8):702–713. https://doi.org/10.1002/cyto.a.22302

    Article  PubMed  Google Scholar 

  23. Robinson SP, Patterson S, English N, Davies D, Knight SC, Reid CD (1999) Human peripheral blood contains two distinct lineages of dendritic cells. Eur J Immunol 29(9):2769–2778. https://doi.org/10.1002/(SICI)1521-4141(199909)29:09<2769::AID-IMMU2769>3.0.CO;2-2

    Article  CAS  PubMed  Google Scholar 

  24. Hong HS, Eberhard JM, Keudel P, Bollmann BA, Ahmad F, Ballmaier M, Bhatnagar N, Zielinska-Skowronek M, Schmidt RE, Meyer-Olson D (2010) Phenotypically and functionally distinct subsets contribute to the expansion of CD56-/CD16+ natural killer cells in HIV infection. AIDS 24(12):1823–1834. https://doi.org/10.1097/QAD.0b013e32833b556f

    Article  CAS  PubMed  Google Scholar 

  25. Quandt D, Rothe K, Scholz R, Baerwald CW, Wagner U (2014) Peripheral CD4CD8 double positive T cells with a distinct helper cytokine profile are increased in rheumatoid arthritis. PLoS One 9(3):e93293. https://doi.org/10.1371/journal.pone.0093293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Crispín JC, Oukka M, Bayliss G, Cohen RA, Van Beek CA, Stillman IE, Kyttaris VC, Juang YT, Tsokos GC (2008) Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J Immunol 181(12):8761–8766

    Article  Google Scholar 

  27. Trautmann A, Rückert B, Schmid-Grendelmeier P, Niederer E, Bröcker EB, Blaser K, Akdis CA (2003) Human CD8 T cells of the peripheral blood contain a low CD8 expressing cytotoxic/effector subpopulation. Immunology 108(3):305–312

    Article  CAS  Google Scholar 

  28. Thomas R, Lipsky PE (1994) Human peripheral blood dendritic cell subsets. Isolation and characterization of precursor and mature antigen-presenting cells. J Immunol 153(9):4016–4028

    CAS  PubMed  Google Scholar 

  29. Holmannova D, Kolackova M, Kunes P, Krejsek J, Mandak J, Andrys C (2016) Impact of cardiac surgery on the expression of CD40, CD80, CD86 and HLA-DR on B cells and monocytes. Perfusion 31(5):391–400. https://doi.org/10.1177/0267659115612905

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo S. Gaipl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Donaubauer, AJ., Rühle, P.F., Becker, I., Fietkau, R., Gaipl, U.S., Frey, B. (2019). One-Tube Multicolor Flow Cytometry Assay (OTMA) for Comprehensive Immunophenotyping of Peripheral Blood. In: Steinitz, M. (eds) Human Monoclonal Antibodies. Methods in Molecular Biology, vol 1904. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8958-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8958-4_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8957-7

  • Online ISBN: 978-1-4939-8958-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics