Skip to main content

Overexpression of miRNA in Cotton via Agrobacterium-Mediated Transformation

  • Protocol
  • First Online:
Transgenic Cotton

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1902))

Abstract

microRNAs (miRNAs) are an extensive class of newly identified endogenous small regulatory molecules. Many studies show that miRNAs play a critical role in almost all biological and metabolic progress through targeting protein-coding genes for mRNA cleavage or translation inhibition. Many miRNAs are also identified from cotton using computational and/or experimental approaches, including the next-generation deep sequencing technology. However, their functions are unclear. In this chapter, we describe a detailed method for overexpressing miRNA, miR156 as an example, in cotton using Agrobacterium-mediated genetic transformation. This provides an approach to investigate the function and regulatory mechanism of miRNAs in cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2004) MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  Google Scholar 

  2. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301:336–338

    Article  CAS  Google Scholar 

  3. Zhang BH, Pan XP, Cobb GP, Anderson TA (2006) Plant microRNA: A small regulatory molecule with big impact. Dev Biol 289:3–16

    Article  CAS  Google Scholar 

  4. Zhang BH, Wang QL, Pan XP (2007) MicroRNAs and their regulatory roles in animals and plants. J Cell Physiol 210:279–289

    Article  CAS  Google Scholar 

  5. Zhang BH, Pan XP, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  CAS  Google Scholar 

  6. Ambros V (2001) microRNAs: Tiny regulators with great potential. Cell 107:823–826

    Article  CAS  Google Scholar 

  7. Zhang B, Wang Q (2015) MicroRNA-based biotechnology for plant improvement. J Cell Physiol 230:1–15

    Article  CAS  Google Scholar 

  8. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  Google Scholar 

  9. Chen XM (2005) microRNA biogenesis and function in plants. FEBS Lett 579:5923–5931

    Article  CAS  Google Scholar 

  10. Chiou TJ (2007) The role of microRNAs in sensing nutrient stress. Plant Cell Environ 30:323–332

    Article  CAS  Google Scholar 

  11. Lu SF, Sun YH, Shi R, Clark C, Li LG, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  CAS  Google Scholar 

  12. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  CAS  Google Scholar 

  13. Qiu CX, Xie FL, Zhu YY, Guo K, Huang SQ, Nie L, Yang ZM (2007) Computational identification of microRNAs and their targets in Gossypium hirsutum expressed sequence tags. Gene 395:49–61

    Article  CAS  Google Scholar 

  14. Zhang BH, Wang QL, Wang KB, Pan XP, Liu F, Guo TL, Cobb GP, Anderson TA (2007) Identification of cotton microRNAs and their targets. Gene 397:26–37

    Article  CAS  Google Scholar 

  15. Khan Barozai MY, Irfan M, Yousaf R, Ali I, Qaisar U, Maqbool A, Zahoor M, Rashid B, Hussnain T, Riazuddin S (2008) Identification of micro-RNAs in cotton. Plant Physiol Biochem 46:739–751

    Article  CAS  Google Scholar 

  16. Abdurakhmonov IY, Devor EJ, Buriev ZT, Huang LY, Makamov A, Shermatov SE, Bozorov T, Kushanov FN, Mavlonov GT, Abdukarimov A (2008) Small RNA regulation of ovule development in the cotton plant, G. hirsutum L. BMC Plant Biol 8:12

    Article  CAS  Google Scholar 

  17. He XH, Cai YF, Sun Q, Yuan YL, Shi YZ (2011) MicroRNA expression profiling during upland cotton gland forming age by microarray and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Afr J Biotechnol 10:8695–8702

    Article  CAS  Google Scholar 

  18. Pang MX, Xing CZ, Adams N, Rodriguez-Uribe L, Hughs SE, Hanson SF, Zhang JF (2011) Comparative expression of miRNA genes and miRNA-based AFLP marker analysis in cultivated tetraploid cottons. J Plant Physiol 168:824–830

    Article  CAS  Google Scholar 

  19. Kwak PB, Wang QQ, Chen XS, Qiu CX, Yang ZM (2009) Enrichment of a set of microRNAs during the cotton fiber development. BMC Genomics 10:457

    Article  CAS  Google Scholar 

  20. Pang MX, Woodward AW, Agarwal V, Guan XY, Ha M, Ramachandran V, Chen XM, Triplett BA, Stelly DM, Chen ZJ (2009) Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.). Genome Biol 10:R122

    Article  CAS  Google Scholar 

  21. Ruan MB, Zhao YT, Meng ZH, Wang XJ, Yang WC (2009) Conserved miRNA analysis in Gossypium hirsutum through small RNA sequencing. Genomics 94:263–268

    Article  CAS  Google Scholar 

  22. Wang Q, Zhang B (2015) MicroRNAs in cotton: an open world needs more exploration. Planta 241:1303–1312

    Article  CAS  Google Scholar 

  23. Chuck G, Meeley R, Hake S (2008) Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1. Development 135:3013–3019

    Article  CAS  Google Scholar 

  24. Lauter N, Kampani A, Carlson S, Goebel M, Moose SP (2005) microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci U S A 102:9412–9417

    Article  CAS  Google Scholar 

  25. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  CAS  Google Scholar 

  26. Chen XM (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  Google Scholar 

  27. Fu C, Sunkar R, Zhou C, Shen H, Zhang J-Y, Matts J, Wolf J, Mann DGJ, Stewart CN, Tang Y, Wang Z-Y (2012) Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnol J 10(4):443–452. https://doi.org/10.1111/j.1467-7652.2011.00677.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  29. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  Google Scholar 

  30. Chen CF, Ridzon DA, Broomer AJ, Zhou ZH, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  CAS  Google Scholar 

  31. Ossowski S, Schwab R, Weigel D (2008) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant J 53:674–690

    Article  CAS  Google Scholar 

  32. Jin SX, Zhang XL, Liang SG, Nie YC, Guo XP, Huang C (2005) Factors affecting transformation efficiency of embryogenic callus of Upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell Tissue Org Cult 81:229–237

    Article  CAS  Google Scholar 

  33. Sunilkumar G, Rathore KS (2001) Transgenic cotton: factors influencing Agrobacterium-mediated transformation and regeneration. Mol Breed 8:37–52

    Article  CAS  Google Scholar 

  34. Wu S-J, Wang H-H, Li F-F, Chen T-Z, Zhang J, Jiang Y-J, Ding Y, Guo W-Z, Zhang T-Z (2008) Enhanced Agrobacterium-mediated transformation of embryogenic calli of upland cotton via efficient selection and timely subculture of somatic embryos. Plant Mol Biol Report 26:174–185

    Article  CAS  Google Scholar 

  35. Zhang B-H, Liu F, Liu Z-H, Wang H-M, Yao C-B (2001) Effects of kanamycin on tissue culture and somatic embryogenesis in cotton. Plant Growth Regul 33:137–149

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, M., Sun, R., Wang, Q., Zhang, B. (2019). Overexpression of miRNA in Cotton via Agrobacterium-Mediated Transformation. In: Zhang, B. (eds) Transgenic Cotton. Methods in Molecular Biology, vol 1902. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8952-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8952-2_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8951-5

  • Online ISBN: 978-1-4939-8952-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics