Skip to main content

Techniques for Evaluating Efflux Transport of Radiolabeled Drugs and Compounds from the Cerebrospinal Fluid Across the Blood-Cerebrospinal Fluid Barrier

  • Protocol
  • First Online:
Book cover Blood-Brain Barrier

Part of the book series: Neuromethods ((NM,volume 142))

Abstract

Choroid plexus epithelial cells are known to play a role as the blood-cerebrospinal fluid (CSF) barrier (BCSFB), which separates the compartments of the CSF in the cerebroventricles from the circulating blood. Recent reports have identified the molecular based efflux transport systems at the BCSFB. Because these transport systems participate in the elimination of compounds/drugs from the CSF, these experimental findings about the systems are of great importance to increase our knowledge of the homeostasis of compound concentration in the brain and CSF. There are many reports of in vivo and in vitro methods to examine BCSFB-mediated organic compound efflux transport. In this section, we describe the in vivo intracerebroventricular administration technique to evaluate carrier-mediated elimination of compounds from the CSF in rats. As the in vitro methods, the transport studies using choroid plexus prepared from rat cerebroventricles and a conditionally immortalized rat choroid plexus epithelial cell line, TR-CSFB3 cells, are described in detail. The information obtained from these studies will help us to understand the molecular mechanisms of compound efflux transport across the BCSFB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de R, Ames A 3rd, Nesbett FB, Hofmann HF (1960) Fluid formed by choroid plexus; a technique for its collection and a comparison of its electrolyte composition with serum and cisternal fluids. J Neurophysiol 23:485–495

    Article  Google Scholar 

  2. Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677

    Article  CAS  Google Scholar 

  3. Lun MP, Monuki ES, Lehtinen MK (2015) Development and functions of the choroid plexus-cerebrospinal fluid system. Nat Rev Neurosci 16:445–457

    Article  CAS  Google Scholar 

  4. Nagata Y, Kusuhara H, Endou H, Sugiyama Y (2002) Expression and functional characterization of rat organic anion transporter 3 (rOat3) in the choroid plexus. Mol Pharmacol 61:982–988

    Article  CAS  Google Scholar 

  5. Nagle MA, Wu W, Eraly SA, Nigam SK (2013) Organic anion transport pathways in antiviral handling in choroid plexus in Oat1 (Slc22a6) and Oat3 (Slc22a8) deficient tissue. Neurosci Lett 534:133–138

    Article  CAS  Google Scholar 

  6. Ohtsuki S, Takizawa T, Takanaga H, Hori S, Hosoya K, Terasaki T (2004) Localization of organic anion transporting polypeptide 3 (oatp3) in mouse brain parenchymal and capillary endothelial cells. J Neurochem 90:743–749

    Article  CAS  Google Scholar 

  7. Tachikawa M, Tsuji K, Yokoyama R, Higuchi T, Ozeki G, Yashiki A, Akanuma S, Hayashi K, Nishiura A, Hosoya K (2012) A clearance system for prostaglandin D2, a sleep-promoting factor, in cerebrospinal fluid: role of the blood-cerebrospinal barrier transporters. J Pharmacol Exp Ther 343:608–616

    Article  CAS  Google Scholar 

  8. Ohtsuki S, Takizawa T, Takanaga H, Terasaki N, Kitazawa T, Sasaki M, Abe T, Hosoya K, Terasaki T (2003) In vitro study of the functional expression of organic anion transporting polypeptide 3 at rat choroid plexus epithelial cells and its involvement in the cerebrospinal fluid-to-blood transport of estrone-3-sulfate. Mol Pharmacol 63:532–537

    Article  CAS  Google Scholar 

  9. Tachikawa M, Ozeki G, Higuchi T, Akanuma S, Tsuji K, Hosoya K (2012) Role of the blood-cerebrospinal fluid barrier transporter as a cerebral clearance system for prostaglandin E(2) produced in the brain. J Neurochem 123:750–760

    Article  CAS  Google Scholar 

  10. Usui T, Nakazawa A, Okura T, Deguchi Y, Akanuma S, Kubo Y, Hosoya K (2016) Histamine elimination from the cerebrospinal fluid across the blood-cerebrospinal fluid barrier: involvement of plasma membrane monoamine transporter (PMAT/SLC29A4). J Neurochem 139:408–418

    Article  CAS  Google Scholar 

  11. Okura T, Kato S, Takano Y, Sato T, Yamashita A, Morimoto R, Ohtsuki S, Terasaki T, Deguchi Y (2011) Functional characterization of rat plasma membrane monoamine transporter in the blood-brain and blood-cerebrospinal fluid barriers. J Pharm Sci 100:3924–3938

    Article  CAS  Google Scholar 

  12. Tachikawa M, Kasai Y, Takahashi M, Fujinawa J, Kitaichi K, Terasaki T, Hosoya K (2008) The blood-cerebrospinal fluid barrier is a major pathway of cerebral creatinine clearance: involvement of transporter-mediated process. J Neurochem 107:432–442

    Article  CAS  Google Scholar 

  13. Tachikawa M, Fujinawa J, Takahashi M, Kasai Y, Fukaya M, Sakai K, Yamazaki M, Tomi M, Watanabe M, Sakimura K, Terasaki T, Hosoya K (2008) Expression and possible role of creatine transporter in the brain and at the blood-cerebrospinal fluid barrier as a transporting protein of guanidinoacetate, an endogenous convulsant. J Neurochem 107:768–778

    Article  CAS  Google Scholar 

  14. Wakayama K, Ohtsuki S, Takanaga H, Hosoya K, Terasaki T (2002) Localization of norepinephrine and serotonin transporter in mouse brain capillary endothelial cells. Neurosci Res 44:173–180

    Article  CAS  Google Scholar 

  15. Levin E, Nogueira GJ, Garcia Argiz CA (1966) Ventriculo-cisternal perfusion of amino acids in cat brain. I. Rates of disappearance from the perfusate. J Neurochem 13:761–767

    Article  CAS  Google Scholar 

  16. Levin E, Garcia Argiz CA, Nogueira GJ (1966) Ventriculo-cisternal perfusion of amino acids in cat brain. II. Incorporation of glutamic acid, glutamine and GABA into the brain parenchyma. J Neurochem 13:979–988

    Article  CAS  Google Scholar 

  17. Baethmann A, Steude U, Horsch S, Brendel W (1970) The thiosulphate (35S) space in the CNS of rats after ventriculo-cisternal perfusion. Pflugers Arch 316:51–63

    Article  CAS  Google Scholar 

  18. Bradbury MW, Brondsted HE (1973) Sodium-dependent transport of sugars and iodide from the cerebral venticles of the rabbit. J Physiol 234:127–143

    Article  CAS  Google Scholar 

  19. Suzuki H, Sawada Y, Sugiyama Y, Iga T, Hanano M (1985) Saturable transport of cimetidine from cerebrospinal fluid to blood in rats. J Pharmacobiodyn 8:73–76

    Article  CAS  Google Scholar 

  20. Fujiyoshi M, Tachikawa M, Ohtsuki S, Ito S, Uchida Y, Akanuma S, Kamiie J, Hashimoto T, Hosoya K, Iwatsubo T, Terasaki T (2011) Amyloid-beta peptide(1-40) elimination from cerebrospinal fluid involves low-density lipoprotein receptor-related protein 1 at the blood-cerebrospinal fluid barrier. J Neurochem 118:407–415

    Article  CAS  Google Scholar 

  21. Ogawa M, Suzuki H, Sawada Y, Hanano M, Sugiyama Y (1994) Kinetics of active efflux via choroid plexus of beta-lactam antibiotics from the CSF into the circulation. Am J Phys 266:R392–R399

    CAS  Google Scholar 

  22. Sweet DH, Miller DS, Pritchard JB, Fujiwara Y, Beier DR, Nigam SK (2002) Impaired organic anion transport in kidney and choroid plexus of organic anion transporter 3 (Oat3 (Slc22a8)) knockout mice. J Biol Chem 277:26934–26943

    Article  CAS  Google Scholar 

  23. Sykes D, Sweet DH, Lowes S, Nigam SK, Pritchard JB, Miller DS (2004) Organic anion transport in choroid plexus from wild-type and organic anion transporter 3 (Slc22a8)-null mice. Am J Physiol Renal Physiol 286:F972–F978

    Article  CAS  Google Scholar 

  24. Lowes S, Sykes D, Breen CM, Ragone LJ, Miller DS (2005) Multiple components of 2,4-dichlorophenoxyacetic acid uptake by rat choroid plexus. J Pharmacol Exp Ther 315:136–143

    Article  CAS  Google Scholar 

  25. Suzuki H, Sawada Y, Sugiyama Y, Iga T, Hanano M (1986) Transport of cimetidine by the rat choroid plexus in vitro. J Pharmacol Exp Ther 239:927–935

    CAS  PubMed  Google Scholar 

  26. Kitazawa T, Hosoya K, Takahashi T, Sugiyama Y, Terasaki T (2000) In-vivo and in-vitro evidence of a carrier-mediated efflux transport system for oestrone-3-sulphate across the blood-cerebrospinal fluid barrier. J Pharm Pharmacol 52:281–288

    Article  CAS  Google Scholar 

  27. Akanuma S, Sakurai T, Tachikawa M, Kubo Y, Hosoya K (2015) Transporter-mediated L-glutamate elimination from cerebrospinal fluid: possible involvement of excitatory amino acid transporters expressed in ependymal cells and choroid plexus epithelial cells. Fluids Barriers CNS 12:11

    Article  Google Scholar 

  28. Akanuma S, Shimada H, Kubo Y, Hosoya K (2017) Involvement of carrier-mediated transport at the blood-cerebrospinal fluid barrier in spermine clearance from rat brain. Biol Pharm Bull 40:1599–1603

    Article  CAS  Google Scholar 

  29. Barkho BZ, Monuki ES (2015) Proliferation of cultured mouse choroid plexus epithelial cells. PLoS One 10:e0121738

    Article  Google Scholar 

  30. Takano M, Otani M, Kaji T, Sano K, Hamada-Kanazawa M, Matsuyama S (2016) Proteomic analysis of mouse choroid plexus cell line ECPC-4 treated with lipid A. Inflamm Res 65:295–302

    Article  CAS  Google Scholar 

  31. Zheng W, Zhao Q (2002) Establishment and characterization of an immortalized Z310 choroidal epithelial cell line from murine choroid plexus. Brain Res 958:371–380

    Article  CAS  Google Scholar 

  32. Kitazawa T, Hosoya K, Watanabe M, Takashima T, Ohtsuki S, Takanaga H, Ueda M, Yanai N, Obinata M, Terasaki T (2001) Characterization of the amino acid transport of new immortalized choroid plexus epithelial cell lines: a novel in vitro system for investigating transport functions at the blood-cerebrospinal fluid barrier. Pharm Res 18:16–22

    Article  CAS  Google Scholar 

  33. Song H, Zheng G, Liu Y, Shen XF, Zhao ZH, Aschner M, Luo WJ, Chen JY (2016) Cellular uptake of lead in the blood-cerebrospinal fluid barrier: novel roles of Connexin 43 hemichannel and its down-regulations via Erk phosphorylation. Toxicol Appl Pharmacol 297:1–11

    Article  CAS  Google Scholar 

  34. Gu H, Zhong Z, Jiang W, Du E, Dodel R, Farlow MR, Zheng W, Du Y (2014) The role of choroid plexus in IVIG-induced beta-amyloid clearance. Neuroscience 270:168–176

    Article  CAS  Google Scholar 

  35. Kumabe T, Tominaga T, Kondo T, Yoshimoto T, Kayama T (1996) Intraoperative radiation therapy and chemotherapy for huge choroid plexus carcinoma in an infant – case report. Neurol Med Chir (Tokyo) 36:179–184

    Article  CAS  Google Scholar 

  36. Szmydynger-Chodobska J, Pascale CL, Pfeffer AN, Coulter C, Chodobski A (2007) Expression of junctional proteins in choroid plexus epithelial cell lines: a comparative study. Cerebrospinal Fluid Res 4:11

    Article  Google Scholar 

  37. Akanuma S, Yamazaki Y, Kubo Y, Hosoya K (2018) Role of cationic drug-sensitive transport systems at the blood-cerebrospinal fluid barrier in para-tyramine elimination from rat brain. Fluids Barriers CNS 15:1

    Article  Google Scholar 

  38. Faraj BA, Camp VM, Ansley JD, Scott J, Ali FM, Malveaux EJ (1981) Evidence for central hypertyraminemia in hepatic encephalopathy. J Clin Invest 67:395–402

    Article  CAS  Google Scholar 

  39. Fukao M, Ishida K, Horie A, Taguchi M, Nozawa T, Inoue H, Hashimoto Y (2014) Variability of bioavailability and intestinal absorption mechanisms of metoprolol. Drug Metab Pharmacokinet 29:162–167

    Article  CAS  Google Scholar 

  40. Ishida K, Horie A, Nishimura M, Taguchi M, Fujii N, Nozawa T, Inoue H, Hashimoto Y (2013) Variability of bioavailability and intestinal absorption characteristics of bisoprolol. Drug Metab Pharmacokinet 28:491–496

    Article  CAS  Google Scholar 

  41. Tega Y, Akanuma S, Kubo Y, Hosoya K (2015) Involvement of the H+/organic cation antiporter in nicotine transport in rat liver. Drug Metab Dispos 43:89–92

    Article  Google Scholar 

  42. Tega Y, Yuzurihara C, Kubo Y, Akanuma S, Ehrhardt C, Hosoya K (2016) Functional expression of nicotine influx transporter in A549 human alveolar epithelial cells. Drug Metab Pharmacokinet 31:99–101

    Article  CAS  Google Scholar 

  43. Tega Y, Akanuma S, Kubo Y, Terasaki T, Hosoya K (2013) Blood-to-brain influx transport of nicotine at the rat blood-brain barrier: involvement of a pyrilamine-sensitive organic cation transport process. Neurochem Int 62:173–181

    Article  CAS  Google Scholar 

  44. Okura T, Hattori A, Takano Y, Sato T, Hammarlund-Udenaes M, Terasaki T, Deguchi Y (2008) Involvement of the pyrilamine transporter, a putative organic cation transporter, in blood-brain barrier transport of oxycodone. Drug Metab Dispos 36:2005–2013

    Article  CAS  Google Scholar 

  45. Yamazaki M, Fukuoka H, Nagata O, Kato H, Ito Y, Terasaki T, Tsuji A (1994) Transport mechanism of an H1-antagonist at the blood-brain barrier: transport mechanism of mepyramine using the carotid injection technique. Biol Pharm Bull 17:676–679

    Article  CAS  Google Scholar 

  46. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates in stereotaxic coordinates. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgment

This research, especially the in vivo and in vitro p-tyramine transport study, was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI [Grant Numbers JP16H05110 and JP16K08365] and the Research Grant from the Smoking Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Hosoya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Akanuma, Si., Kubo, Y., Hosoya, Ki. (2019). Techniques for Evaluating Efflux Transport of Radiolabeled Drugs and Compounds from the Cerebrospinal Fluid Across the Blood-Cerebrospinal Fluid Barrier. In: Barichello, T. (eds) Blood-Brain Barrier. Neuromethods, vol 142. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8946-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8946-1_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8945-4

  • Online ISBN: 978-1-4939-8946-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics