Skip to main content

Isolation and Characterisation of Human Adipose-Derived Stem Cells

Part of the Methods in Molecular Biology book series (MIMB,volume 1899)

Abstract

Recently, adipose-derived stem cells (ASCs), obtained from fresh human lipoaspirate, have shown promise as immunomodulatory agents having demonstrated immunosuppressive functionality both in vitro and in vivo. A number of researchers have described the isolation of ASCs through the enzymatic digestion of fat samples, followed by a number of purification steps, involving centrifugation and filtration. Here, we utilize a standard isolation technique, with the added purification of putative ASCs by fluorescence activated cell sorting (FACS). ASCs are an extremely valuable resource in clinical applications, including reconstruction, regeneration, and investigations into immune activity. This method could be used to isolate and purify ASCs for such downstream applications.

Key words

  • Adipose-derived stem cells
  • Adipose stem cells
  • ASCs
  • Isolation
  • Characterization
  • Immunosuppression
  • Immunomodulation
  • Stromal vascular fraction
  • Collagenase
  • Lipotransfer
  • Lipoaspirate

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-8938-6_1
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-8938-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Zuk PA et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228

    CAS  CrossRef  Google Scholar 

  2. Doi K et al (2013) Stromal vascular fraction isolated from lipo-aspirates using an automated processing system: bench and bed analysis. J Tissue Eng Regen Med 7(11):864–870

    CAS  CrossRef  Google Scholar 

  3. Blaber SP et al (2012) Analysis of in vitro secretion profiles from adipose-derived cell populations. J Transl Med 10:172

    CAS  CrossRef  Google Scholar 

  4. Ong WK, Sugii S (2013) Adipose-derived stem cells: fatty potentials for therapy. Int J Biochem Cell Biol 45(6):1083–1086

    CAS  CrossRef  Google Scholar 

  5. Jeong SH, Ji YH, Yoon ES (2014) Immunosuppressive activity of adipose tissue-derived mesenchymal stem cells in a rat model of hind limb allotransplantation. Transplant Proc 46(5):1606–1614

    CAS  CrossRef  Google Scholar 

  6. Nagaya R et al (2014) Mechanisms of the immunosuppressive effects of mouse adipose tissue-derived mesenchymal stromal cells on mouse alloreactively stimulated spleen cells. Exp Ther Med 7(1):17–22

    CAS  CrossRef  Google Scholar 

  7. Barone AAL et al (2013) Immunomodulatory effects of adipose-derived stem cells: fact or fiction? Biomed Res Int 2013:383685

    Google Scholar 

  8. Puissant N et al (2005) Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 129(1):118–129

    CrossRef  Google Scholar 

  9. Yanez R et al (2006) Adipose tissue-derived mesenchymal stem cells have in vivo immunosuppressive properties applicable for the control of the graft-versus-host disease. Stem Cells 24(11):2582–2591

    CAS  CrossRef  Google Scholar 

  10. Cho KS et al (2009) IFATS collection: immunomodulatory effects of adipose tissue-derived stem cells in an allergic rhinitis mouse model. Stem Cells 27(1):259–265

    CAS  CrossRef  Google Scholar 

  11. Bahrami B et al (2017) Adipose derived stem cells exert immunomodulatory effects on natural killer cells in breast cancer. Cell J 19(1):137–145

    PubMed  Google Scholar 

  12. Yoo KH et al (2009) Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol 259(2):150–156

    CAS  CrossRef  Google Scholar 

  13. Gronthos S et al (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189(1):54–63

    CAS  CrossRef  Google Scholar 

  14. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98(5):1076–1084

    CAS  CrossRef  Google Scholar 

  15. Cui L et al (2007) Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng 13(6):1185–1195

    CAS  CrossRef  Google Scholar 

  16. Kingham PJ et al (2014) Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells Dev 23(7):741–754

    CAS  CrossRef  Google Scholar 

  17. Ohta Y et al (2017) Intravenous infusion of adipose-derived stem/stromal cells improves functional recovery of rats with spinal cord injury. Cytotherapy 19(7):839–848

    CrossRef  Google Scholar 

  18. Gonzalez-Rey E et al (2009) Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis. Gut 58(7):929–939

    CAS  CrossRef  Google Scholar 

  19. Lopez-Santalla M et al (2015) Human adipose-derived Mesenchymal stem cells modulate experimental autoimmune arthritis by modifying early adaptive T cell responses. Stem Cells 33(12):3493–3503

    CAS  CrossRef  Google Scholar 

  20. Mariani E, Facchini A (2012) Clinical applications and biosafety of human adult mesenchymal stem cells. Curr Pharm Des 18(13):1821–1845

    CAS  CrossRef  Google Scholar 

  21. Missana MC et al (2007) Autologous fat transfer in reconstructive breast surgery: indications, technique and results. Eur J Surg Oncol 33(6):685–690

    CAS  CrossRef  Google Scholar 

  22. Bernard RW, Beran SJ (2003) Autologous fat graft in nipple reconstruction. Plast Reconstr Surg 112(4):964–968

    CrossRef  Google Scholar 

  23. Coleman SR (2006) Structural fat grafting: more than a permanent filler. Plast Reconstr Surg 118(3 Suppl):108S–120S

    CAS  CrossRef  Google Scholar 

  24. Yoshimura K et al (2008) Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells. Aesthet Plast Surg 32(1):48–55 discussion 56-7

    CrossRef  Google Scholar 

  25. Fraser J et al (2007) Differences in stem and progenitor cell yield in different subcutaneous adipose tissue depots. Cytotherapy 9(5):459–467

    CAS  CrossRef  Google Scholar 

  26. Deimling LI, et al. Interaction of human, canine and murine adipose-derived stem cells with different biomaterials. 5th European Conference of the International Federation for Medical and Biological Engineering, vol. 37, Pts 1 and 2, 2012. p. 1315.

    Google Scholar 

  27. Dominici M et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    CAS  CrossRef  Google Scholar 

  28. Rigotti G et al (2007) Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 119(5):1409–1422

    CAS  CrossRef  Google Scholar 

  29. Bunnell BA et al (2008) Adipose-derived stem cells: isolation, expansion and differentiation. Methods 45(2):115–120

    CAS  CrossRef  Google Scholar 

  30. Kolle SF et al (2013) Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial. Lancet 382(9898):1113–1120

    CrossRef  Google Scholar 

  31. Punshon G et al (2008) Assessment of the potential of progenitor stem cells extracted from human peripheral blood for seeding a novel vascular graft material. Cell Prolif 41(2):321–335

    CAS  CrossRef  Google Scholar 

  32. Suga H et al (2008) Numerical measurement of viable and nonviable adipocytes and other cellular components in aspirated fat tissue. Plast Reconstr Surg 122(1):103–114

    CAS  CrossRef  Google Scholar 

  33. Maecker HT, Trotter J (2006) Flow cytometry controls, instrument setup, and the determination of positivity. Cytometry A 69A(9):1037–1042

    CrossRef  Google Scholar 

  34. Kanthilal M, Darling EM (2014) Characterization of mechanical and regenerative properties of human, adipose stromal cells. Cell Mol Bioeng 7(4):585–597

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

This work was supported by the Restoration of Appearance and Function Trust (RAFT), with funding from the Kirby Laing Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashleigh S. Boyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Wilson, A., Chee, M., Butler, P., Boyd, A.S. (2019). Isolation and Characterisation of Human Adipose-Derived Stem Cells. In: Boyd, A. (eds) Immunological Tolerance. Methods in Molecular Biology, vol 1899. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8938-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8938-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8936-2

  • Online ISBN: 978-1-4939-8938-6

  • eBook Packages: Springer Protocols