Skip to main content

Fundamentals of RNA Analysis on Biobanked Specimens

  • Protocol
  • First Online:
Book cover Biobanking

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1897))

Abstract

Compared to DNA, analysis of RNA is one step closer on the central dogma of biology to assessing cellular function. This makes it an extremely valuable target for research and clinical testing in nearly all areas of molecular biology. Most RNA molecules are ephemeral by nature. They exist as temporary intermediates, ostensibly enabling data transfer between the genome and the organism. Their ribose backbone renders them sensitive to simple degradation over time and they are the target molecule for numerous and abundant ribonucleases which have evolved to chop them to pieces with extreme efficiency. At the biochemical level, this means that they degrade rapidly in most physiological and laboratory conditions and are thus challenging to study. When considering specimen banking, it is critical to keep this reality in mind, as some commonly used banking modalities will not adequately preserve the relevant RNA molecules in a measureable state.

In this chapter, we explore the broad range of RNA testing methodologies in current use, with particular focus on how specimen preparation impacts analysis. Following an overview in the introduction, Subheading 2 covers the major specimen types amenable to RNA analysis in the context of biobanking. Subheading 3 discusses the applications of various RNA analysis modalities to research and clinical testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Article  CAS  Google Scholar 

  2. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    Article  CAS  Google Scholar 

  3. Amaral PP, Mattick JS (2008) Noncoding RNA in development. Mamm Genome 19:454–492

    Article  CAS  Google Scholar 

  4. Mercer TR, Dinger ME, Sunkin SM, Mehler MF, Mattick JS (2008) Specific expression of long noncoding RNAs in the mouse brain. Proc Natl Acad Sci U S A 105:716–721

    Article  CAS  Google Scholar 

  5. Lee MS, LeMaistre A, Kantarjian HM, Talpaz M, Freireich EJ et al (1989) Detection of two alternative bcr/abl mRNA junctions and minimal residual disease in Philadelphia chromosome positive chronic myelogenous leukemia by polymerase chain reaction. Blood 73:2165–2170

    CAS  PubMed  Google Scholar 

  6. Micke P, Ohshima M, Tahmasebpoor S, Ren ZP, Ostman A et al (2006) Biobanking of fresh frozen tissue: RNA is stable in nonfixed surgical specimens. Lab Investig 86:202–211

    Article  CAS  Google Scholar 

  7. Langebrake C, Gunther K, Lauber J, Reinhardt D (2007) Preanalytical mRNA stabilization of whole bone marrow samples. Clin Chem 53:587–593

    Article  CAS  Google Scholar 

  8. Mutter GL, Zahrieh D, Liu C, Neuberg D, Finkelstein D et al (2004) Comparison of frozen and RNALater solid tissue storage methods for use in RNA expression microarrays. BMC Genomics 5:88

    Article  Google Scholar 

  9. Zeugner S, Mayr T, Zietz C, Aust DE, Baretton GB (2015) RNA quality in fresh-frozen gastrointestinal tumor specimens-experiences from the tumor and healthy tissue bank TU Dresden. Recent Results Cancer Res 199:85–93

    Article  CAS  Google Scholar 

  10. Ribeiro-Silva A, Zhang H, Jeffrey SS (2007) RNA extraction from ten year old formalin-fixed paraffin-embedded breast cancer samples: a comparison of column purification and magnetic bead-based technologies. BMC Mol Biol 8:118

    Article  Google Scholar 

  11. O'Driscoll L, Kennedy S, McDermott E, Kelehan P, Clynes M (1996) Multiple drug resistance-related messenger RNA expression in archival formalin-fixed paraffin-embedded human breast tumour tissue. Eur J Cancer 32A:128–133

    Article  CAS  Google Scholar 

  12. Bialkowska-Hobrzanska H, Driman DK, Fletcher R, Harry V, Razvi H (2006) Expression of human telomerase reverse transcriptase, Survivin, DD3 and PCGEM1 messenger RNA in archival prostate carcinoma tissue. Can J Urol 13:2967–2974

    PubMed  Google Scholar 

  13. Deben C, Zwaenepoel K, Boeckx C, Wouters A, Pauwels P et al (2013) Expression analysis on archival material revisited: isolation and quantification of RNA extracted from FFPE samples. Diagn Mol Pathol 22:59–64

    Article  CAS  Google Scholar 

  14. von Ahlfen S, Missel A, Bendrat K, Schlumpberger M (2007) Determinants of RNA quality from FFPE samples. PLoS One 2:e1261

    Article  Google Scholar 

  15. Solomon MJ, Varshavsky A (1985) Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci U S A 82:6470–6474

    Article  CAS  Google Scholar 

  16. Miething F, Hering S, Hanschke B, Dressler J (2006) Effect of fixation to the degradation of nuclear and mitochondrial DNA in different tissues. J Histochem Cytochem 54:371–374

    Article  CAS  Google Scholar 

  17. Williams C, Ponten F, Moberg C, Soderkvist P, Uhlen M et al (1999) A high frequency of sequence alterations is due to formalin fixation of archival specimens. Am J Pathol 155:1467–1471

    Article  CAS  Google Scholar 

  18. Li J, Smyth P, Flavin R, Cahill S, Denning K et al (2007) Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells. BMC Biotechnol 7:36

    Article  Google Scholar 

  19. Doleshal M, Magotra AA, Choudhury B, Cannon BD, Labourier E et al (2008) Evaluation and validation of total RNA extraction methods for microRNA expression analyses in formalin-fixed, paraffin-embedded tissues. J Mol Diagn 10:203–211

    Article  CAS  Google Scholar 

  20. Xi Y, Nakajima G, Gavin E, Morris CG, Kudo K et al (2007) Systematic analysis of microRNA expression of RNA extracted from fresh frozen and formalin-fixed paraffin-embedded samples. RNA 13:1668–1674

    Article  CAS  Google Scholar 

  21. Li J, Smyth P, Cahill S, Denning K, Flavin R et al (2008) Improved RNA quality and TaqMan Pre-amplification method (PreAmp) to enhance expression analysis from formalin fixed paraffin embedded (FFPE) materials. BMC Biotechnol 8:10

    Article  Google Scholar 

  22. Ladd AC, O'Sullivan-Mejia E, Lea T, Perry J, Dumur CI et al (2011) Preservation of fine-needle aspiration specimens for future use in RNA-based molecular testing. Cancer Cytopathol 119:102–110

    Article  CAS  Google Scholar 

  23. Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 1:581–585

    Article  CAS  Google Scholar 

  24. Bird IM (2005) Extraction of RNA from cells and tissue. Methods Mol Med 108:139–148

    CAS  PubMed  Google Scholar 

  25. Kotorashvili A, Ramnauth A, Liu C, Lin J, Ye K et al (2012) Effective DNA/RNA co-extraction for analysis of microRNAs, mRNAs, and genomic DNA from formalin-fixed paraffin-embedded specimens. PLoS One 7:e34683

    Article  CAS  Google Scholar 

  26. Schroeder A, Mueller O, Stocker S, Salowsky R, Leiber M et al (2006) The RIN: an RNA integrity number for assigning integrity values to RNA measurements. BMC Mol Biol 7:3

    Article  Google Scholar 

  27. Imbeaud S, Graudens E, Boulanger V, Barlet X, Zaborski P et al (2005) Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Res 33:e56

    Article  Google Scholar 

  28. Gallego Romero I, Pai AA, Tung J, Gilad Y (2014) RNA-seq: impact of RNA degradation on transcript quantification. BMC Biol 12:42

    Article  Google Scholar 

  29. Marques AR, Espadinha C, Catarino AL, Moniz S, Pereira T et al (2002) Expression of PAX8-PPAR gamma 1 rearrangements in both follicular thyroid carcinomas and adenomas. J Clin Endocrinol Metab 87:3947–3952

    CAS  PubMed  Google Scholar 

  30. Klemke M, Drieschner N, Belge G, Burchardt K, Junker K et al (2012) Detection of PAX8-PPARG fusion transcripts in archival thyroid carcinoma samples by conventional RT-PCR. Genes Chromosomes Cancer 51:402–408

    Article  CAS  Google Scholar 

  31. Serpa M, Sanabani SS, Dorliac-Llacer PE, Conchon M, Pereira TD et al (2010) Molecular measurement of BCR-ABL transcript variations in chronic myeloid leukemia patients in cytogenetic remission. BMC Blood Disord 10:7

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Vu HL, Troubetzkoy S, Nguyen HH, Russell MW, Mestecky J (2000) A method for quantification of absolute amounts of nucleic acids by (RT)-PCR and a new mathematical model for data analysis. Nucleic Acids Res 28:E18

    Article  CAS  Google Scholar 

  33. Suzuki R, Takemura K, Tsutsumi M, Nakamura S, Hamajima N et al (2001) Detection of cyclin D1 overexpression by real-time reverse-transcriptase-mediated quantitative polymerase chain reaction for the diagnosis of mantle cell lymphoma. Am J Pathol 159:425–429

    Article  CAS  Google Scholar 

  34. de Boer CJ, van Krieken JH, Kluin-Nelemans HC, Kluin PM, Schuuring E (1995) Cyclin D1 messenger RNA overexpression as a marker for mantle cell lymphoma. Oncogene 10:1833–1840

    PubMed  Google Scholar 

  35. Poodt J, Fijnheer R, Walsh IB, Hermans MH (2006) A sensitive and reliable semi-quantitative real-time PCR assay to detect JAK2 V617F in blood. Hematol Oncol 24:227–233

    Article  CAS  Google Scholar 

  36. Olsen RJ, Tang Z, Farkas DH, Bernard DW, Zu Y et al (2006) Detection of the JAK2(V617F) mutation in myeloproliferative disorders by melting curve analysis using the LightCycler system. Arch Pathol Lab Med 130:997–1003

    CAS  PubMed  Google Scholar 

  37. Kroger N, Badbaran A, Holler E, Hahn J, Kobbe G et al (2007) Monitoring of the JAK2-V617F mutation by highly sensitive quantitative real-time PCR after allogeneic stem cell transplantation in patients with myelofibrosis. Blood 109:1316–1321

    Article  Google Scholar 

  38. Webster AF, Zumbo P, Fostel J, Gandara J, Hester SD et al (2015) Mining the archives: a cross-platform analysis of gene expression profiles in archival formalin-fixed paraffin-embedded (FFPE) tissue. Toxicol Sci

    Google Scholar 

  39. Callari M, Lembo A, Bianchini G, Musella V, Cappelletti V et al (2014) Accurate data processing improves the reliability of Affymetrix gene expression profiles from FFPE samples. PLoS One 9:e86511

    Article  Google Scholar 

  40. Ciotti P, Garuti A, Ballestrero A, Cirmena G, Chiaramondia M et al (2009) Reliability and reproducibility of a RNA preamplification method for low-density array analysis from formalin-fixed paraffin-embedded breast cancer samples. Diagn Mol Pathol 18:112–118

    Article  CAS  Google Scholar 

  41. Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW et al (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods 1:155–161

    Article  CAS  Google Scholar 

  42. Chen Z, Duan X (2011) Ribosomal RNA depletion for massively parallel bacterial RNA-sequencing applications. Methods Mol Biol 733:93–103

    Article  CAS  Google Scholar 

  43. O'Neil D, Glowatz H, Schlumpberger M (2013) Ribosomal RNA depletion for efficient use of RNA-seq capacity. Curr Protoc Mol Biol Chapter 4:Unit4.19

    Google Scholar 

  44. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  Google Scholar 

  45. Li R, Yu C, Li Y, Lam TW, Yiu SM et al (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  Google Scholar 

  46. Grant GR, Farkas MH, Pizarro AD, Lahens NF, Schug J et al (2011) Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics 27:2518–2528

    Article  CAS  Google Scholar 

  47. Piskol R, Ramaswami G, Li JB (2013) Reliable identification of genomic variants from RNA-seq data. Am J Hum Genet 93:641–651

    Article  CAS  Google Scholar 

  48. Ku CS, Wu M, Cooper DN, Naidoo N, Pawitan Y et al (2012) Exome versus transcriptome sequencing in identifying coding region variants. Expert Rev Mol Diagn 12:241–251

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel P. Strom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Strom, S.P. (2019). Fundamentals of RNA Analysis on Biobanked Specimens. In: Yong, W. (eds) Biobanking. Methods in Molecular Biology, vol 1897. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8935-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8935-5_29

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8933-1

  • Online ISBN: 978-1-4939-8935-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics