Extracellular Vesicles as Carriers of Suicide mRNA and/or Protein in Cancer Therapy

  • Erdogan Pekcan Erkan
  • Nurten Saydam
  • Clark C. Chen
  • Okay SaydamEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1895)


Gene therapy involves the introduction of genes (termed transgenes) into cells to compensate for a deficiency or to make a beneficial protein. Gene therapy can used as a form of cancer treatment. A particularly attractive paradigm in this regard involves the selective introduction of transgenes into cancer cells that converts inactive prodrugs into active chemotherapeutic agents, thereby triggering the death of cancer cells. Since prodrugs are inactive, they tend not to cause significant side-effects and are well-tolerated by patients relative to conventional chemotherapy. Several viral and nonviral vectors have been used as delivery tools for suicide gene therapy. Extracellular vesicles (EVs) are now recognized as a promising class of nonviral delivery vectors. Here, we describe a method in which a suicide fusion gene construct is loaded into EVs derived from a non-tumorigenic cell line. Delivery of these modified EVs to glioblastoma cell lines and spheroids decreases glioblastoma cell viability, induces apoptotic cell death, and inhibits tumor growth in vivo.

Key words

Extracellular vesicles Cancer therapy Suicide mRNA Suicide protein Glioblastoma 


  1. 1.
    Mullen CA, Kilstrup M, Blaese RM (1992) Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5-fluorocytosine: a negative selection system. Proc Natl Acad Sci U S A 89:33–37CrossRefGoogle Scholar
  2. 2.
    Hirschowitz EA, Ohwada A, Pascal WR, Russi TJ, Crystal RG (1995) In vivo adenovirus-mediated gene transfer of the Escherichia coli cytosine deaminase gene to human colon carcinoma-derived tumors induces chemosensitivity to 5-fluorocytosine. Hum Gene Ther 6:1055–1063CrossRefGoogle Scholar
  3. 3.
    Li Z, Shanmugam N, Katayose D et al (1997) Enzyme/prodrug gene therapy approach for breast cancer using a recombinant adenovirus expressing Escherichia coli cytosine deaminase. Cancer Gene Ther 4:113–117PubMedGoogle Scholar
  4. 4.
    Huber BE, Austin EA, Good SS, Knick VC, Tibbels S, Richards CA (1993) In vivo antitumor activity of 5-fluorocytosine on human colorectal carcinoma cells genetically modified to express cytosine deaminase. Cancer Res 53:4619–4626PubMedGoogle Scholar
  5. 5.
    Kanai F, Kawakami T, Hamada H et al (1998) Adenovirus-mediated transduction of Escherichia coli uracil phosphoribosyltransferase gene sensitizes cancer cells to low concentrations of 5-fluorouracil. Cancer Res 58:1946–1951PubMedGoogle Scholar
  6. 6.
    Tiraby M, Cazaux C, Baron M, Drocourt D, Reynes JP, Tiraby G (1998) Concomitant expression of E. coli cytosine deaminase and uracil phosphoribosyltransferase improves the cytotoxicity of 5-fluorocytosine. FEMS Microbiol Lett 167:41–49CrossRefGoogle Scholar
  7. 7.
    Kaliberov SA, Chiz S, Kaliberova LN et al (2006) Combination of cytosine deaminase suicide gene expression with DR5 antibody treatment increases cancer cell cytotoxicity. Cancer Gene Ther 13:203–214CrossRefGoogle Scholar
  8. 8.
    Richard C, Duivenvoorden W, Bourbeau D et al (2007) Sensitivity of 5-fluorouracil-resistant cancer cells to adenovirus suicide gene therapy. Cancer Gene Ther 14:57–65CrossRefGoogle Scholar
  9. 9.
    Brown L, Wolf JM, Prados-Rosales R, Casadevall A (2015) Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol 13:620–630CrossRefGoogle Scholar
  10. 10.
    Zarogoulidis P, Darwiche K, Sakkas A et al (2013) Suicide gene therapy for cancer—current strategies. J Genet Syndr Gene Ther 4:16849. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Erkan EP, Senfter D, Madlener S et al (2017) Extracellular vesicle-mediated suicide mRNA/protein delivery inhibits glioblastoma tumor growth in vivo. Cancer Gene Ther 24:38–44CrossRefGoogle Scholar
  12. 12.
    Mizrak A, Bolukbasi MF, Ozdener GB et al (2013) Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol Ther 21:101–108CrossRefGoogle Scholar
  13. 13.
    Gyorgy B, Hung ME, Breakefield XO, Leonard JN (2015) Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol 55:439–464CrossRefGoogle Scholar
  14. 14.
    El-Andaloussi S, Lee Y, Lakhal-Littleton S et al (2012) Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc 7:2112–2126CrossRefGoogle Scholar
  15. 15.
    O'Loughlin AJ, Mager I, de Jong OG et al (2017) Functional delivery of lipid-conjugated siRNA by extracellular vesicles. Mol Ther 25:1580–1587CrossRefGoogle Scholar
  16. 16.
    Alexander M, Hu R, Runtsch MC et al (2015) Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun 6:7321CrossRefGoogle Scholar
  17. 17.
    Ohno S, Kuroda M (2016) Exosome-mediated targeted delivery of miRNAs. Methods Mol Biol 1448:261–270CrossRefGoogle Scholar
  18. 18.
    Jiang L, Vader P, Schiffelers RM (2017) Extracellular vesicles for nucleic acid delivery: progress and prospects for safe RNA-based gene therapy. Gene Ther 24:157–166CrossRefGoogle Scholar
  19. 19.
    Shelke GV, Lasser C, Gho YS, Lotvall J (2014) Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles 3.
  20. 20.
    Ge Q, Zhou Y, Lu J, Bai Y, Xie X, Lu Z (2014) miRNA in plasma exosome is stable under different storage conditions. Molecules 19:1568–1575CrossRefGoogle Scholar
  21. 21.
    Jin Y, Chen K, Wang Z et al (2016) DNA in serum extracellular vesicles is stable under different storage conditions. BMC Cancer 16:753CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Erdogan Pekcan Erkan
    • 1
  • Nurten Saydam
    • 2
  • Clark C. Chen
    • 2
  • Okay Saydam
    • 2
    Email author
  1. 1.Department of Medical Genetics, Medicum, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
  2. 2.Department of Neurosurgery and School of MedicineUniversity of MinnesotaMinneapolisUSA

Personalised recommendations