Advertisement

Mesenchymal Stem Cell Exosome-Mediated Prodrug Gene Therapy for Cancer

  • Cestmir AltanerEmail author
  • Ursula Altanerova
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1895)

Abstract

Exosomes derived from human mesenchymal stem cells (MSCs) engineered to express the suicide gene yeast cytosine deaminase::uracil phosphoribosyl transferase (yCD::UPRT) represent a new therapeutic approach for tumor-targeted innovative therapy. The yCD::UPRT-MSC-exosomes carry mRNA of the suicide gene in their cargo. Upon internalization by tumor cells, the exosomes inhibit the growth of broad types of cancer cells in vitro, in the presence of a prodrug. Here we describe the method leading to the production and testing of these therapeutic exosomes. The described steps include the preparation of replication-deficient retrovirus possessing the yCD::UPRT suicide gene, and the preparation and selection of MSCs transduced with yCD::UPRT suicide gene. We present procedures to obtain exosomes possessing the ability to induce the death of tumor cells. In addition, we highlight methods for the evaluation of the suicide gene activity of yCD::UPRT-MSC-exosomes.

Key words

Mesenchymal stem cells Retrovirus vectors Suicide gene Therapeutic stem cells Conditional medium Exosomes Cancer cells Tumor cell growth inhibition 

Notes

Acknowledgment

Our studies have been continuously supported by grants awarded to CA from the Slovak League against Cancer.

References

  1. 1.
    Shi Y, Du L, Lin L et al (2017) Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov 16:35–52CrossRefGoogle Scholar
  2. 2.
    Dvorak HF (1986) Tumors: wound that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659CrossRefGoogle Scholar
  3. 3.
    Kucerova L, Altanerova V, Matuskova M et al (2007) Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res 67:6304–6313CrossRefGoogle Scholar
  4. 4.
    Altaner C (2008) Prodrug cancer gene therapy. Cancer Lett 270:191–201CrossRefGoogle Scholar
  5. 5.
    Cihova M, Altanerova V, Altaner C (2011) Stem cell based cancer gene therapy. Mol Pharm 8:1480–1487CrossRefGoogle Scholar
  6. 6.
    Matuskova M, Hlubinova K, Pastorakova A et al (2010) HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett 290:58–67CrossRefGoogle Scholar
  7. 7.
    Kucerova L, Matuskova M, Pastorakova A et al (2008) Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J Gene Med 10:1071–1082CrossRefGoogle Scholar
  8. 8.
    Cavarretta IT, Altanerova V, Matuskova M et al (2010) Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol Ther 18:223–231CrossRefGoogle Scholar
  9. 9.
    Abrate A, Buono R, Canu T et al (2014) Mesenchymal stem cells expressing therapeutic genes induce autochthonous prostate tumour regression. Eur J Cancer 50:2478–2488CrossRefGoogle Scholar
  10. 10.
    Altanerova V, Cihova M, Babic M et al (2012) Human adipose tissue-derived mesenchymal stem cells expressing yeast cytosine deaminase::uracil phosphoribosyltransferase inhibit intracerebral rat glioblastoma. Int J Cancer 130:2455–2463CrossRefGoogle Scholar
  11. 11.
    Altaner C, Altanerova V, Cihova M et al (2014) Complete regression of glioblastoma by mesenchymal stem cells mediated prodrug gene therapy simulating clinical therapeutic scenario. Int J Cancer 134:1458–1465CrossRefGoogle Scholar
  12. 12.
    Altaner C (2013) Stem cell-mediated prodrug gene therapy of high-grade brain tumors. In: Shah K (ed) Stem cell therapeutics for cancer. Wiley-Blackwell, HobokenGoogle Scholar
  13. 13.
    Leibacher J, Henschler R (2016) Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 7:7CrossRefGoogle Scholar
  14. 14.
    Phinney DG, Pittenger MF (2017) Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 35:851–858CrossRefGoogle Scholar
  15. 15.
    Altaner C (2015) Prodrug gene therapy for cancer mediated by mesenchymal stem/stromal cells engineered to express yeast cytosine deaminase::uracil phosphoribosyltransferase. J Stem Cell Res Ther 5:2157–2633Google Scholar
  16. 16.
    Altanerova U, Benejova K, Altanerova V et al (2016) Dental pulp mesenchymal stem/stromal cells labeled with iron sucrose release exosomes and cells applied intra-nasally migrate to intracerebral glioblastoma. Neoplasma 63:925–933CrossRefGoogle Scholar
  17. 17.
    Altanerova U, Jakubechova J, Benejova K et al (2018) Prodrug suicide gene therapy mediated by mesenchymal stem cells exosomes: a new paradigm for cell-free cancer targeted therapy. Int J Cancer. 2018 Aug 11. doi:  https://doi.org/10.1002/ijc.31792. [Epub ahead of print] PMID: 30098225
  18. 18.
    Balyasnikova IV, Ferguson SD, Sengupta S et al (2010) Mesenchymal stem cells modified with a single-chain antibody against EGFRvIII successfully inhibit the growth of human xenograft malignant glioma. PLoS One 5:e9750CrossRefGoogle Scholar
  19. 19.
    Altanerova U, Babincova M, Babinec P et al (2017) Human mesenchymal stem cell-derived iron oxide exosomes allow targeted ablation of tumor cells via magnetic hyperthermia. Int J Nanomedicine 12:7923–7936CrossRefGoogle Scholar
  20. 20.
    Altanerova U, Jakubechova J, Repiska V et al (2017) Exosomes of human mesenchymal stem/stromal/medicinal signaling cells. Minireview. Neoplasma 64:809–815CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Molecular Oncology, Cancer Research Institute, Biomedical Research CenterSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Stem Cell Preparation DepartmentSt. Elizabeth Cancer InstituteBratislavaSlovakia

Personalised recommendations