Advertisement

Cancer Suicide Gene Therapy with TK.007

  • Jubayer A. Hossain
  • Kristoffer Riecken
  • Hrvoje MileticEmail author
  • Boris FehseEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1895)

Abstract

Cancer is a devastating disease characterized by uncontrolled and aggressive cell growth. Suicide gene therapy (SGT) facilitating induction of malignancy-specific cell death represents a novel therapeutic approach to treat cancer, which has been investigated in several cancer types with very promising results. In addition, SGT has been suggested as a safeguard in adoptive immunotherapy and regenerative-medicine settings. Generally, SGT consists of two steps—vector-mediated delivery of suicide genes into tumors and subsequent activation of the suicide mechanism, e.g., by administration of a specific prodrug. This chapter provides a framework of protocols for basic and translational research using the Herpes-simplex-virus thymidine kinase (HSV-TK)/ganciclovir (GCV) system, the most widely used suicide gene approach. The protocols provide standard guidelines for the preparation of high-titer third-generation lentiviral vectors encoding a genetically improved HSV-TK version known as TK.007 and its application in in vitro and in vivo treatment setups.

Key words

Cancer gene therapy Suicide gene therapy HSV-TK Lentiviral vectors Glioblastoma 

References

  1. 1.
    Munch-Petersen B (2010) Enzymatic regulation of cytosolic thymidine kinase 1 and mitochondrial thymidine kinase 2: a mini review. Nucleosides Nucleotides Nucleic Acids 29:363–369.  https://doi.org/10.1080/15257771003729591 CrossRefPubMedGoogle Scholar
  2. 2.
    Deville-Bonne D, El Amri C, Meyer P et al (2010) Human and viral nucleoside/nucleotide kinases involved in antiviral drug activation: structural and catalytic properties. Antivir Res 86:101–120.  https://doi.org/10.1016/j.antiviral.2010.02.001 CrossRefPubMedGoogle Scholar
  3. 3.
    Harrison PT, Thompson R, Davison AJ (1991) Evolution of herpesvirus thymidine kinases from cellular deoxycytidine kinase. J Gen Virol 72:2583–2586.  https://doi.org/10.1099/0022-1317-72-10-2583 CrossRefPubMedGoogle Scholar
  4. 4.
    Denny WA (2003) Prodrugs for gene-directed enzyme-prodrug therapy (suicide gene therapy). J Biomed Biotechnol 2003:48–70.  https://doi.org/10.1155/S1110724303209098 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ilsley DD, Lee SH, Miller WH et al (1995) Acyclic guanosine analogs inhibit DNA polymerases alpha, delta, and epsilon with very different potencies and have unique mechanisms of action. Biochemistry 34:2504–2510CrossRefGoogle Scholar
  6. 6.
    Field AK, Davies ME, DeWitt C et al (1983) 9-([2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine: a selective inhibitor of herpes group virus replication. Proc Natl Acad Sci U S A 80:4139–4143CrossRefGoogle Scholar
  7. 7.
    Moolten FL (1986) Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 46:5276–5281PubMedGoogle Scholar
  8. 8.
    Moolten FL, Wells JM (1990) Curability of tumors bearing herpes thymidine kinase genes transferred by retroviral vectors. J Natl Cancer Inst 82:297–300CrossRefGoogle Scholar
  9. 9.
    Springer CJ, Niculescu-Duvaz I (2005) Suicide gene therapy. In: Curiel DT, Douglas JT (eds) Cancer gene therapy: contemporary cancer research. Humana Press, Clifton, NJGoogle Scholar
  10. 10.
    Edelstein ML, Abedi MR, Wixon J et al (2004) Gene therapy clinical trials worldwide 1989-2004-an overview. J Gene Med 6:597–602.  https://doi.org/10.1002/jgm.619 CrossRefPubMedGoogle Scholar
  11. 11.
    Hlubinova K, Hlavaty J, Altaner C (2001) Human glioma cells expressing herpes simplex virus thymidine kinase gene treated with acyclovir, ganciclovir and bromovinyldeoxyuridine. Evaluation of their activity in vitro and in nude mice. Neoplasma 48:398–406PubMedGoogle Scholar
  12. 12.
    Degreve B, De Clercq E, Balzarini J (1999) Bystander effect of purine nucleoside analogues in HSV-1 tk suicide gene therapy is superior to that of pyrimidine nucleoside analogues. Gene Ther 6:162–170.  https://doi.org/10.1038/sj.gt.3300806 CrossRefPubMedGoogle Scholar
  13. 13.
    Hossain JA, Ystaas LR, Mrdalj J et al (2016) Lentiviral HSV-Tk.007 mediated suicide gene therapy is not toxic for normal brain cells. J Gene Med 18:234–243.  https://doi.org/10.1002/jgm.2895 CrossRefPubMedGoogle Scholar
  14. 14.
    Greco R, Oliveira G, Stanghellini MT et al (2015) Improving the safety of cell therapy with the TK-suicide gene. Front Pharmacol 6:95.  https://doi.org/10.3389/fphar.2015.00095 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Fillat C, Carrio M, Cascante A et al (2003) Suicide gene therapy mediated by the herpes simplex virus thymidine kinase gene/ganciclovir system: fifteen years of application. Curr Gene Ther 3:13–26CrossRefGoogle Scholar
  16. 16.
    Walther W, Schlag PM (2013) Current status of gene therapy for cancer. Curr Opin Oncol 25:659–664.  https://doi.org/10.1097/CCO.0000000000000004 CrossRefPubMedGoogle Scholar
  17. 17.
    Fehse B, Ayuk FA, Kroger N et al (2004) Evidence for increased risk of secondary graft failure after in vivo depletion of suicide gene-modified T lymphocytes transplanted in conjunction with CD34+-enriched blood stem cells. Blood 104:3408–3409.  https://doi.org/10.1182/blood-2004-07-2813 CrossRefPubMedGoogle Scholar
  18. 18.
    Balzarini J, Liekens S, Solaroli N et al (2006) Engineering of a single conserved amino acid residue of herpes simplex virus type 1 thymidine kinase allows a predominant shift from pyrimidine to purine nucleoside phosphorylation. J Biol Chem 281:19273–19279.  https://doi.org/10.1074/jbc.M600414200 CrossRefPubMedGoogle Scholar
  19. 19.
    Salomon B, Maury S, Loubiere L et al (1995) A truncated herpes simplex virus thymidine kinase phosphorylates thymidine and nucleoside analogs and does not cause sterility in transgenic mice. Mol Cell Biol 15:5322–5328CrossRefGoogle Scholar
  20. 20.
    Chalmers D, Ferrand C, Apperley JF et al (2001) Elimination of the truncated message from the herpes simplex virus thymidine kinase suicide gene. Mol Ther 4:146–148.  https://doi.org/10.1006/mthe.2001.0433 CrossRefPubMedGoogle Scholar
  21. 21.
    Preuss E, Treschow A, Newrzela S et al (2010) TK.007: a novel, codon-optimized HSVtk(A168H) mutant for suicide gene therapy. Hum Gene Ther 21:929–941.  https://doi.org/10.1089/hum.2009.042 CrossRefPubMedGoogle Scholar
  22. 22.
    Fehse B, Kustikova OS, Li Z et al (2002) A novel ‘sort-suicide’ fusion gene vector for T cell manipulation. Gene Ther 9:1633–1638.  https://doi.org/10.1038/sj.gt.3301828 CrossRefPubMedGoogle Scholar
  23. 23.
    Weber K, Mock U, Petrowitz B et al (2010) Lentiviral gene ontology (LeGO) vectors equipped with novel drug-selectable fluorescent proteins: new building blocks for cell marking and multi-gene analysis. Gene Ther 17:511–520.  https://doi.org/10.1038/gt.2009.149 CrossRefPubMedGoogle Scholar
  24. 24.
    Preuss E, Muik A, Weber K et al (2011) Cancer suicide gene therapy with TK.007:superior killing efficiency and bystander effect. J Mol Med 89:1113–1124.  https://doi.org/10.1007/s00109-011-0777-8 CrossRefPubMedGoogle Scholar
  25. 25.
    Naldini L, Blomer U, Gallay P et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272:263–267CrossRefGoogle Scholar
  26. 26.
    Dull T, Zufferey R, Kelly M et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471PubMedPubMedCentralGoogle Scholar
  27. 27.
    Beyer WR, Westphal M, Ostertag W et al (2002) Oncoretrovirus and lentivirus vectors pseudotyped with lymphocytic choriomeningitis virus glycoprotein: generation, concentration, and broad host range. J Virol 76:1488–1495CrossRefGoogle Scholar
  28. 28.
    Sakariassen PO, Prestegarden L, Wang J et al (2006) Angiogenesis-independent tumor growth mediated by stem-like cancer cells. Proc Natl Acad Sci U S A 103:16466–16471.  https://doi.org/10.1073/pnas.0607668103 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fehse B, Kustikova OS, Bubenheim M et al (2004) Pois(s)on—it’s a question of dose. Gene Ther 11:879–881.  https://doi.org/10.1038/sj.gt.3302270 CrossRefPubMedGoogle Scholar
  30. 30.
    Huszthy PC, Daphu I, Niclou SP et al (2012) In vivo models of primary brain tumors: pitfalls and perspectives. Neuro Oncol 14:979–993.  https://doi.org/10.1093/neuonc/nos135 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BiomedicineUniversity of BergenBergenNorway
  2. 2.KG Jebsen Brain Tumor Research CentreUniversity of BergenBergenNorway
  3. 3.Department of PathologyHaukeland University HospitalBergenNorway
  4. 4.Research Department Cell and Gene Therapy, Department of Stem Cell TransplantationUniversity Medical Center Hamburg-EppendorfHamburgGermany

Personalised recommendations