Suicide Gene Therapy of Oral Squamous Cell Carcinoma and Cervical Carcinoma In Vitro

  • Nejat DüzgüneşEmail author
  • Jennifer Cheung
  • Krystyna Konopka
Part of the Methods in Molecular Biology book series (MIMB, volume 1895)


Suicide gene therapy induced by the Herpes Simplex Virus thymidine kinase/ganciclovir (HSV-tk/GCV) system has been utilized to successfully treat various cancers. We describe TransfeX-mediated transfection of pCMV.Luc into HeLa cervical carcinoma and HSC-3, FaDu, and H357 oral squamous cell carcinoma (OSCC) cell lines in the presence of 10% serum. This method has proved to be highly efficient, with low nonspecific cytotoxicity. The plasmid pNGVL1-tk encoding HSV-tk under the control of the CMV promoter was delivered to the cells in vitro via TransfeX, a cationic liposomal reagent, followed by treatment with ganciclovir. The Alamar Blue cell viability assay was used to determine levels of the suicide effect.

Key words

Herpes simplex virus thymidine kinase Ganciclovir Oral squamous cell carcinoma Cervical carcinoma Transfection 


  1. 1.
    Massano J, Regateiro FS, Januario G, Ferreira A (2006) Oral squamous cell carcinoma: review of prognostic and predictive factors. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 102:67–76CrossRefGoogle Scholar
  2. 2.
    Jeries W, Upile T, Akram S, Hopper C (2010) The surgical palliation of advanced head and neck cancer using photodynamic therapy. Clin Oncol 22:785–791CrossRefGoogle Scholar
  3. 3.
    Rousseau A, Badoual C (2012) Head and neck: squamous cell carcinoma: an overview. Atlas Genet Cytogenet Oncol Haematol 16:145–155Google Scholar
  4. 4.
    Chi AC, Day TA, Neville BW (2015) Oral cavity and oropharyngeal squamous cell carcinoma—an update. CA Cancer J Clin 65:401–421CrossRefGoogle Scholar
  5. 5.
    Turner L, Mupparapu M, Akintoye SO (2013) Review of the complications associated with treatment of oropharyngeal cancer: a guide for the dental practitioner. Quintessence Int 44:267–279PubMedPubMedCentralGoogle Scholar
  6. 6.
    Vohra F, Al-Kheraif AA, Oardi T et al (2015) Efficacy of photodynamic therapy in the management of oral premalignant lesions. A systematic review. Photodiagn Photodyn Ther 12:150–159CrossRefGoogle Scholar
  7. 7.
    McGraw SL, Ferrante JM (2014) Update on prevention and screening of cervical cancer. World J Clin Oncol 5:744–752CrossRefGoogle Scholar
  8. 8.
    Fillat C, Carrió M, Cascante A, Sangro B (2003) Suicide gene therapy mediated by the herpes simplex virus thymidine kinase gene/Ganciclovir system: fifteen years of application. Curr Gene Ther 3(1):13–26CrossRefGoogle Scholar
  9. 9.
    Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL, Abraham GN (1993) The “bystander effect”: tumor regression when a fraction of the tumor mass is genetically modified. Cancer Res 53:5274–5283PubMedGoogle Scholar
  10. 10.
    Dilber MS, Abedi MR, Christensson B et al (1997) Gap junctions promote the bystander effect of herpes simplex virus thymidine kinase in vivo. Cancer Res 57:1523–1528PubMedGoogle Scholar
  11. 11.
    Mesnil M, Yamasaki H (2000) Bystander effect in herpes simplex virus thymidine kinase/ganciclovir cancer gene therapy: role of gap-junctional intercellular communication. Cancer Res 60:3989–3999PubMedGoogle Scholar
  12. 12.
    Konopka K, Lee A, Moser-Kim N et al (2004) Gene transfer to human oral cancer cells via non-viral vectors and HSV-tk/ganciclovir-mediated cytotoxicity; potential for suicide gene therapy. Gene Ther Mol Biol 8:307–318Google Scholar
  13. 13.
    O’Malley BW, Couch ME (2000) Gene therapy principles and strategies for head and neck cancer. Adv Otorhinolaryngol 56:279–288CrossRefGoogle Scholar
  14. 14.
    Xi S, Grandis JR (2003) Gene therapy for the treatment of oral squamous cell carcinoma. J Dent Res 82:11–16CrossRefGoogle Scholar
  15. 15.
    Pedroso de Lima MC, Simões S, Pires P et al (2001) Cationic lipid-DNA complexes in gene delivery: from biophysics to biological applications. Adv Drug Deliv Rev 47:277–294CrossRefGoogle Scholar
  16. 16.
    Tros de Ilarduya C, Sun Y, Düzgüneş N (2010) Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci 40:159–170CrossRefGoogle Scholar
  17. 17.
    Simões S, Pires P, Düzgüneş N, Pedroso de Lima MC (1999) Cationic liposomes as gene transfer vectors: barriers to successful application in gene therapy. Curr Opin Mol Ther 1:147–157PubMedGoogle Scholar
  18. 18.
    Cheung J, Chino T, Konopka K, Düzgüneş N (2016) A nonviral vector with transfection activity comparable with adenoviral transduction. Ther Deliv 11:739–749CrossRefGoogle Scholar
  19. 19.
    Fields RD, Lancaster MV (1993) Dual-attribute continuous monitoring of cell proliferation/cytotoxicity. Am Biotechnol Lab 11:48–50PubMedGoogle Scholar
  20. 20.
    Konopka K, Pretzer E, Felgner PL, Düzgüneş N (1996) Human immunodeficiency virus type-1 (HIV-1) infection increases the sensitivity of macrophages and THP-1 cells to cytotoxicity by cationic liposomes. Biochim Biophys Acta 1312:186–196CrossRefGoogle Scholar
  21. 21.
    Portsmouth D, Hlavaty J, Renner M (2007) Suicide genes for cancer therapy. Mol Asp Med 28:4–41CrossRefGoogle Scholar
  22. 22.
    Karjoo Z, Chen X, Hatefi A (2016) Progress and problems with the use of suicide genes for target cancer therapy. Adv Drug Deliv Rev 99(Part A):113–128CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nejat Düzgüneş
    • 1
    Email author
  • Jennifer Cheung
    • 1
  • Krystyna Konopka
    • 1
  1. 1.Department of Biomedical SciencesArthur A. Dugoni School of Dentistry, University of the PacificSan FranciscoUSA

Personalised recommendations