Origins of Suicide Gene Therapy

  • Nejat DüzgüneşEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1895)


“Tumor chemosensitivity” can be achieved by the expression of the herpes simplex virus thymidine kinase gene in cells, followed by the conversion of the “prodrug” ganciclovir into the therapeutic drug inside the cells. This system presaged other combinations of suicide genes and prodrugs, including cytosine deaminase/5-fluorocytosine, purine nucleoside phosphorylase/6-methylpurine deoxyriboside, and horseradish peroxidase/indole-3-acetic acid.

Key words

Suicide gene therapy Prodrug Herpes simplex virus thymidine kinase Cytosine deaminase Purine nucleoside phosphorylase Horseradish peroxidase 


  1. 1.
    Field AK, Davies ME, DeWitt C, Perry HC, Liou R, Germershausen J, Karkas JD, Ashton WT, Johnston DB, Tolman RL (1983) 9-([2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine: a selective inhibitor of herpes group virus replication. Proc Natl Acad Sci U S A 80:4139–4143CrossRefGoogle Scholar
  2. 2.
    Moolten FL (1986) Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res 46:5276–5281Google Scholar
  3. 3.
    Lal S, Lauer UM, Niethammer D, Beck JF, Schlegel PG (2000) Suicide genes: past, present and future perspectives. Immunol Today 21:48–54CrossRefGoogle Scholar
  4. 4.
    Duarte S, Carle G, Faneca H, de Lima MC, Pierrefite-Carle V (2012) Suicide gene therapy in cancer: where do we stand now? Cancer Lett 324:160–170CrossRefGoogle Scholar
  5. 5.
    Zarogoulidis P, Darwiche K, Sakkas A, Yarmus L, Huang H, Li Q, Freitag L, Zarogoulidis K, Malecki M (2013) Suicide gene therapy for cancer – current strategies. J Genet Syndr Gene Ther 4:16849PubMedPubMedCentralGoogle Scholar
  6. 6.
    Karjoo Z, Chen X, Hatefi A (2016) Progress and problems with the use of suicide genes for targeted cancer therapy. Adv Drug Deliv Rev 99(Pt A):113–128CrossRefGoogle Scholar
  7. 7.
    De Clercq E, Krajewska E, Descamps J, Torrence PF (1977) Anti-herpes activity of deoxythymidine analogues: specific dependence on virus-Induced deoxythymidine kinase. Mol Pharm 13:980–984Google Scholar
  8. 8.
    Leib DA, Ruffner KL, Hildebrand C, Schaffer PA, Wright GE, Coen DM (1990) Specific inhibitors of herpes simplex virus thymidine kinase diminish reactivation of latent virus from explanted murine ganglia. Antimicrob Agents Chemother 34:1285–1286CrossRefGoogle Scholar
  9. 9.
    Pan J, Wang H, Liu X, Hu J, Song W, Luo J, Jiang S, Yan F, Zhai B (2015) Tumor restrictive suicide gene therapy for glioma controlled by the FOS promoter. PLoS One 10(11):e0143112CrossRefGoogle Scholar
  10. 10.
    Rawlinson JW, Vaden K, Hunsaker J, Miller DF, Nephew KP (2013) Adenoviral-delivered HE4-HSV-tk sensitizes ovarian cancer cells to ganciclovir. Gene Ther Mol Biol 15:120–130PubMedPubMedCentralGoogle Scholar
  11. 11.
    Öztürk MB, Li Y, Tergaonkar V (2017) Current insights to regulation and role of telomerase in human diseases. Antioxidants (Basel) 6(1). pii: E17
  12. 12.
    Tian D, Sun Y, Yang Y, Lei M, Ding N, Han R (2013) Human telomerase reverse-transcriptase promoter-controlled and herpes simplex virus thymidine kinase-armed adenoviruses for renal cell carcinoma treatment. Onco Targets Ther 6:419–426PubMedPubMedCentralGoogle Scholar
  13. 13.
    Austin EA, Huber BE (1993) A first step in the development of gene therapy for colorectal carcinoma: cloning, sequencing, and expression of Escherichia coli cytosine deaminase. Mol Pharmacol 43:380–387PubMedGoogle Scholar
  14. 14.
    Trinh QT, Austin EA, Murray DM, Knick VC, Huber BE (1995) Enzyme/prodrug gene therapy: comparison of cytosine deaminase/5-fluorocytosine versus thymidine kinase/ganciclovir enzyme/prodrug systems in a human colorectal carcinoma cell line. Cancer Res 55:4808–4812PubMedGoogle Scholar
  15. 15.
    Cao G, Kuriyama S, Gao J, Kikukawa M, Cui L, Nakatani T, Zhang X, Tsujinoue H, Pan X, Fukui H, Qi Z (1999) Effective and safe gene therapy for colorectal carcinoma using the cytosine deaminase gene directed by the carcinoembryonic antigen promoter. Gene Ther 6:83–90CrossRefGoogle Scholar
  16. 16.
    Chang DY, Yoo SW, Hong Y, Kim S, Kim SJ, Yoon SH, Cho KG, Paek SH, Lee YD, Kim SS, Suh-Kim H (2010) The growth of brain tumors can be suppressed by multiple transplantation of mesenchymal stem cells expressing cytosine deaminase. Int J Cancer 127:1975–1983CrossRefGoogle Scholar
  17. 17.
    Mahan SD, Ireton GC, Stoddard BL, Black ME (2004) Alanine-scanning mutagenesis reveals a cytosine deaminase mutant with altered substrate preference. Biochemistry 43:8957–8964CrossRefGoogle Scholar
  18. 18.
    Deng LY, Wang JP, Gui ZF, Shen LZ (2011) Antitumor activity of mutant bacterial cytosine deaminase gene for colon cancer. World J Gastroenterol 17:2958–2964CrossRefGoogle Scholar
  19. 19.
    Raza A, Kohila V, Ghosh SS (2015) Redesigned Escherichia coli cytosine deaminase: a new facet of suicide gene therapy. J Gene Med 17:132–139CrossRefGoogle Scholar
  20. 20.
    Sorscher EJ, Peng S, Bebok Z, Allan PW, Bennett LL Jr, Parker WB (1994) Tumor cell bystander killing in colonic carcinoma utilizing the Escherichia coli DeoD gene to generate toxic purines. Gene Ther 1:233–238PubMedGoogle Scholar
  21. 21.
    Parker WB, King SA, Allan PW, Bennett LL Jr, Secrist JA 3rd, Montgomery JA, Gilbert KS, Waud WR, Wells AH, Gillespie GY, Sorscher EJ (1997) In vivo gene therapy of cancer with E. coli purine nucleoside phosphorylase. Hum Gene Ther 8:1637–1644CrossRefGoogle Scholar
  22. 22.
    Rosenthal EL, Chung TK, Parker WB, Allan PW, Clemons L, Lowman D, Hong J, Hunt FR, Richman J, Conry RM, Mannion K, Carroll WR, Nabell L, Sorscher EJ (2015) Phase I dose-escalating trial of Escherichia coli purine nucleoside phosphorylase and fludarabine gene therapy for advanced solid tumors. Ann Oncol 26:1481–1487PubMedPubMedCentralGoogle Scholar
  23. 23.
    Hinman RL, Bauman C, Lang J (1961) The conversion of indole-3-acetic acid to 3-methylene-oxindole in the presence of peroxidase. Biochem Biophys Res Commun 5:250–254CrossRefGoogle Scholar
  24. 24.
    Greco O, Folkes LK, Wardman P, Tozer GM, Dachs GU (2000) Development of a novel enzyme/prodrug combination for gene therapy of cancer: horseradish peroxidase/indole-3-acetic acid. Cancer Gene Ther 7:1414–1420CrossRefGoogle Scholar
  25. 25.
    Folkes LK, Wardman P (2001) Oxidative activation of indole-3-acetic acids to cytotoxic species - a potential new role for plant auxins in cancer therapy. Biochem Pharmacol 61:129–136CrossRefGoogle Scholar
  26. 26.
    Tupper J, Stratford MR, Hill S, Tozer GM, Dachs GU (2010) In vivo characterization of horseradish peroxidase with indole-3-acetic acid and 5-bromoindole-3-acetic acid for gene therapy of cancer. Cancer Gene Ther 17:420–428CrossRefGoogle Scholar
  27. 27.
    Dai M, Liu J, Chen DE, Rao Y, Tang ZJ, Ho WZ, Dong CY (2012) Tumor-targeted gene therapy using Adv-AFP-HRPC/IAA prodrug system suppresses growth of hepatoma xenografted in mice. Cancer Gene Ther 19:77–83CrossRefGoogle Scholar
  28. 28.
    Jounaidi Y, Hecht JE, Waxman DJ (1998) Retroviral transfer of human cytochrome P450 genes for oxazaphosphorine-based cancer gene therapy. Cancer Res 58:4391–4401PubMedGoogle Scholar
  29. 29.
    Bridgewater JA, Springer CJ, Knox RJ, Minton NP, Michael NP, Collins MK (1995) Expression of the bacterial nitroreductase enzyme in mammalian cells renders them selectively sensitive to killing by the prodrug CB1954. Eur J Cancer 31A:2362–2370CrossRefGoogle Scholar
  30. 30.
    Green NK, Youngs DJ, Neoptolemos JP, Friedlos F, Knox RJ, Springer CJ, Anlezark GM, Michael NP, Melton RG, Ford MJ, Young LS, Kerr DJ, Searle PF (1997) Sensitization of colorectal and pancreatic cancer cell lines to the prodrug 5-(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954) by retroviral transduction and expression of the E. coli nitroreductase gene. Cancer Gene Ther 4:229–238PubMedGoogle Scholar
  31. 31.
    Kojima A, Hackett NR, Ohwada A, Crystal RG (1998) In vivo human carboxylesterase cDNA gene transfer to activate the prodrug CPT-11 for local treatment of solid tumors. J Clin Invest 101:1789–1796CrossRefGoogle Scholar
  32. 32.
    Nomura T, Nakajima S, Kawabata K, Yamashita F, Takakura Y, Hashida M (1997) Intratumoral pharmacokinetics and in vivo gene expression of naked plasmid DNA and its cationic liposome complexes after direct gene transfer. Cancer Res 57:2681–2686PubMedGoogle Scholar
  33. 33.
    Simões S, Slepushkin V, Gaspar R, de Lima MC, Düzgüneş N (1998) Gene delivery by negatively charged ternary complexes of DNA, cationic liposomes and transferrin or fusigenic peptides. Gene Ther 5:955–964CrossRefGoogle Scholar
  34. 34.
    Neves S, Faneca H, Bertin S, Konopka K, Düzgüneş N, Pierrefite-Carle V, Simões S, Pedroso de Lima MC (2009) Transferrin lipoplex-mediated suicide gene therapy of oral squamous cell carcinoma in an immunocompetent murine model and mechanisms involved in the antitumoral response. Cancer Gene Ther 16:91–101CrossRefGoogle Scholar
  35. 35.
    Park CY, Tseng D, Weissman IL (2009) Cancer stem cell-directed therapies: recent data from the laboratory and clinic. Mol Ther 17:219–230CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biomedical Sciences, Arthur A. Dugoni School of DentistryUniversity of the PacificSan FranciscoUSA

Personalised recommendations