Nanotoxicity pp 271-280 | Cite as

Metabolic Fingerprinting of Bacteria Exposed to Nanomaterials, Using Online Databases, NMR, and High-Resolution Mass Spectrometry

  • Theodoros G. Chatzimitakos
  • Constantine D. StalikasEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1894)


Nanomaterials are examined more and more for their antibacterial properties. Herein, we propose a method for assessing the bactericidal properties of nanomaterials against Escherichia coli and Staphylococcus aureus, as well as a method to investigate the metabolic alterations occurring to bacteria, induced by their exposure to nanomaterials. Bacterial metabolome is extracted and metabolic fingerprint is recorded by 1H-NMR. Using metabolomic databases, the tentative metabolites in the samples are revealed, which are further confirmed by UHPLC-HRMS. Finally, conducting a pathway analysis, the metabolic network is revealed.

Key words

Metabolomics Nanomaterials Bacteria Escherichia coli Staphylococcus aureus Antibacterial properties Metabolite extraction 1H-NMR UHPLC-HRMS Fingerprint 


  1. 1.
    Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249. Scholar
  2. 2.
    Chatzimitakos TG, Stalikas CD (2016) Qualitative alterations of bacterial metabolome after exposure to metal nanoparticles with bactericidal properties: a comprehensive workflow based on 1H NMR, UHPLC-HRMS, and metabolic databases. J Proteome Res 15(9):3322–3330. Scholar
  3. 3.
    Liebeke M, Lalk M (2014) Staphylococcus aureus metabolic response to changing environmental conditions – a metabolomics perspective. Int J Med Microbiol 304(3):222–229. Scholar
  4. 4.
    Kosmides AK, Kamisoglu K, Calvano SE et al (2013) Metabolomic fingerprinting: challenges and opportunities. Crit Rev Biomed Eng 41(3):205–221. Scholar
  5. 5.
    Xia J, Wishart DS (2002) Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. In: Current protocols in bioinformatics. John Wiley & Sons, Inc, New York, NY. Scholar
  6. 6.
    Sajed T, Marcu A, Ramirez M et al (2016) ECMDB 2.0: a richer resource for understanding the biochemistry of E. coli. Nucleic Acids Res 44(Database issue):D495–D501. Scholar
  7. 7.
    Chatzimitakos T, Kallimanis A, Avgeropoulos A, Stalikas CD (2016) Antibacterial, anti-biofouling, and antioxidant prospects of metal-based nanomaterials. Clean (Weinh) 44(7):794–802. Scholar
  8. 8.
    Chatzimitakos T, Exarchou V, Ordoudi SA, Fiamegos Y, Stalikas C (2016) Ion-pair assisted extraction followed by 1H NMR determination of biogenic amines in food and biological matrices. Food Chem 202:445–450. Scholar
  9. 9.
    Wishart DS, Jewison T, Guo AC, Wilson M et al (2013) HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res 41(Database issue):D801–D807. Scholar
  10. 10.
    Cui Q, Lewis IA, Hegeman AD et al (2008) Metabolite identification via the Madison Metabolomics Consortium Database. Nat Biotechnol 26:162. Scholar
  11. 11.
    Tautenhahn R, Cho K, Uritboonthai W, Zhu Z, Patti GJ, Siuzdak G (2012) An accelerated workflow for untargeted metabolomics using the METLIN database. Nat Biotechnol 30(9):826–828. Scholar
  12. 12.
    Horai H, Arita M, Kanaya S et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45(7):703–714. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Theodoros G. Chatzimitakos
    • 1
  • Constantine D. Stalikas
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of IoanninaIoanninaGreece

Personalised recommendations