Skip to main content

Evaluation of Nrf2 with Exposure to Nanoparticles

  • Protocol
  • First Online:
Nanotoxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1894))

Abstract

Transcription factor Nrf2, nuclear factor (erythroid-derived 2)-like 2, is considered a master regulator of redox homeostasis and plays a central role in antioxidant and anti-inflammatory defence. It has been largely reported that oxidative stress is implicated in nanoparticle-induced toxicity with the involvement of Nrf2. Several basic methods for Nrf2 evaluation with exposure to nanoparticles are described in this chapter including real-time reverse transcription-polymerase chain reaction (RT-PCR), western blotting, immunofluorescence staining, electrophoretic mobility shift assay, DNase I footprinting, dimethylsulfate footprinting, protein pulse-chase analysis, and tert-butylhydroquinone treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40(4):328–346. https://doi.org/10.3109/10408440903453074

    Article  CAS  PubMed  Google Scholar 

  2. Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdorster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11. https://doi.org/10.1186/1743-8977-3-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Borm PJA, Müller-Schulte D (2006) Nanoparticles in drug delivery and environmental exposure: same size, same risks? Nanomedicine (Lond) 1(2):235–249. https://doi.org/10.2217/17435889.1.2.235

    Article  CAS  Google Scholar 

  4. Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials, Part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90(1):23–32. https://doi.org/10.1093/toxsci/kfj084

    Article  CAS  PubMed  Google Scholar 

  5. Oberdörster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105. https://doi.org/10.1111/j.1365-2796.2009.02187.x

    Article  CAS  PubMed  Google Scholar 

  6. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839 PMCID: PMC1257642

    Article  Google Scholar 

  7. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807. https://doi.org/10.1021/nl061025k

    Article  CAS  PubMed  Google Scholar 

  8. Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LCJ, Martens JA, Billon-Galland MA, Fleury-Feith J, Moisan F, Pairon J-C, Marano F (2009) Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology 260(1-3):142–149. https://doi.org/10.1016/j.tox.2009.04.001

    Article  CAS  Google Scholar 

  9. Eom H-J, Choi J (2009) Oxidative stress of CeO2 nanoparticles via p38-Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett 187(2):77–83. https://doi.org/10.1016/J.TOXLET.2009.01.028

    Article  CAS  PubMed  Google Scholar 

  10. Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23(6):1076–1084. https://doi.org/10.1016/j.tiv.2009.06.001

    Article  CAS  PubMed  Google Scholar 

  11. Park EJ, Yi J, Kim Y, Choi K, Park K (2010) Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 24(3):872–878. https://doi.org/10.1016/j.tiv.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  12. Park EJ, Yi J, Chung KH, Ryu DY, Choi J, Park K (2008) Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180(3):222–229. https://doi.org/10.1016/j.toxlet.2008.06.869

    Article  CAS  PubMed  Google Scholar 

  13. Ding M, Kisin ER, Zhao J, Bowman L, Lu Y, Jiang B, Leonard S, Vallyathan V, Castranova V, Murray AR, Fadeel B, Shvedova AA (2009) Size-dependent effects of tungsten carbide–cobalt particles on oxygen radical production and activation of cell signaling pathways in murine epidermal cells. Toxicol Appl Pharmacol 241(3):260–268. https://doi.org/10.1016/J.TAAP.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  14. Nguyen T, Huang HC, Pickett CB (2000) Transcriptional regulation of the antioxidant response element. Activation by Nrf2 and repression by MafK. J Biol Chem 275(20):15466–15473. https://doi.org/10.1074/jbc.M000361200

    Article  CAS  PubMed  Google Scholar 

  15. Venugopal R, Jaiswal AK (1996) Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci U S A 93(25):14960–14965 PMCID: PMC26245

    Article  CAS  Google Scholar 

  16. Traboulsi H, Guerrina N, Iu M, Maysinger D, Ariya P, Baglole CJ (2017) Inhaled pollutants: the molecular scene behind respiratory and systemic diseases associated with ultrafine particulate matter. Int J Mol Sci 18(2):243. https://doi.org/10.3390/ijms18020243

    Article  CAS  PubMed Central  Google Scholar 

  17. Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47(9):1304–1309. https://doi.org/10.1016/j.freeradbiomed.2009.07.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Osburn WO, Kensler TW (2008) Nrf2 signaling: an adaptive response pathway for protection against environmental toxic insults. Mutat Res 659(1-2):31–39. https://doi.org/10.1016/j.mrrev.2007.11.006

    Article  CAS  PubMed  Google Scholar 

  19. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72(11):1605–1621. https://doi.org/10.1016/J.BCP.2006.06.029

    Article  CAS  PubMed  Google Scholar 

  20. Xu B, Zhang J, Strom J, Lee S, Chen QM (2014) Myocardial ischemic reperfusion induces de novo Nrf2 protein translation. Biochim Biophys Acta 1842(9):1638–1647. https://doi.org/10.1016/j.bbadis.2014.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee SC, Zhang J, Strom J, Yang D, Dinh TN, Kappeler K, Chen QM (2016) G-quadruplex in Nrf2 5′ UTR regulates de novo Nrf2 protein translation under oxidative stress. Mol Cell Biol 37(1):e00122–e00116. https://doi.org/10.1128/MCB.00122-16

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li H, Wu S, Wang Z, Lin W, Zhang C, Huang B (2012) Neuroprotective effects of tert-butylhydroquinone on paraquat-induced dopaminergic cell degeneration in C57BL/6 mice and in PC12 cells. Arch Toxicol 86(11):1729–1740. https://doi.org/10.1007/s00204-012-0935-y

    Article  CAS  PubMed  Google Scholar 

  23. Ye F, Li X, Li L, Yuan J, Chen J (2016) t-BHQ provides protection against lead neurotoxicity via Nrf2/HO-1 pathway. Oxid Med Cell Longev 2016(2016): 1–15. doi: https://doi.org/10.1155/2016/2075915

    Google Scholar 

  24. Li H, Wu S, Shi N (2007) Transcription factor Nrf2 activation by deltamethrin in PC12 cells: involvement of ROS. Toxicol Lett 171(1-2):87–98. https://doi.org/10.1016/j.toxlet.2007.04.007

    Article  CAS  PubMed  Google Scholar 

  25. Li H, Zhong Y, Wu S, Shi N (2007) NF-E2 related factor 2 activation and heme oxygenase-1 induction by tert -butylhydroquinone protect against deltamethrin-mediated oxidative stress in PC12 cells. Chem Res Toxicol 20(9):1242–1251. https://doi.org/10.1021/tx700076q

    Article  CAS  PubMed  Google Scholar 

  26. Li H, Wu S, Shi N, Lin W, You J, Zhou W (2011) NF-E2-related factor 2 activation in PC12 cells: its protective role in manganese-induced damage. Arch Toxicol 85(8):901–910. https://doi.org/10.1007/s00204-010-0625-6

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Z, Guo Z, Zhan Y, Li H, Wu S (2017) Role of histone acetylation in activation of nuclear factor erythroid 2-related factor 2/heme oxygenase 1 pathway by manganese chloride. Toxicol Appl Pharmacol 336:94–100. https://doi.org/10.1016/j.taap.2017.10.011

    Article  CAS  PubMed  Google Scholar 

  28. Li H, Wu S, Shi N, Lian S, Lin W (2011) Nrf2/HO-1 pathway activation by manganese is associated with reactive oxygen species and ubiquitin-proteasome pathway, not MAPKs signaling. J Appl Toxicol 31(7):690–697. https://doi.org/10.1002/jat.1654

    Article  CAS  PubMed  Google Scholar 

  29. Li H, Wu S, Ma Q, Shi N (2011) The pesticide deltamethrin increases free radical production and transcription factor Nrf2 in rat brain. Toxicol Ind Health 27(7):579–590. https://doi.org/10.1177/0748233710393400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li H, Wu S, Chen J, Wang B, Shi N (2013) Effect of glutathione depletion on Nrf2/ARE activation by deltamethrin in PC12 cells. Arch Ind Hyg Toxicol 64(1):87–97. https://doi.org/10.2478/10004-1254-64-2013-2251

    Article  CAS  Google Scholar 

  31. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  Google Scholar 

  32. Brunelle JL, Green R (2014) One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods Enzymol 541:151–159

    Article  CAS  Google Scholar 

  33. Sambrook J, Fritsch EF, Maniatis Y (1989) Sequencing by the Maxam-Gilbert method: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 13.78–13.104

    Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC grant (No. 81573195, 81172715, and 30800936) and Fujian Provincial Key Laboratory of Environmental Factors and Cancer.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zheng, F., Li, H. (2019). Evaluation of Nrf2 with Exposure to Nanoparticles. In: Zhang, Q. (eds) Nanotoxicity. Methods in Molecular Biology, vol 1894. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8916-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8916-4_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8915-7

  • Online ISBN: 978-1-4939-8916-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics