Skip to main content

Hippo Pathway Regulation by Tyrosine Kinases

  • Protocol
  • First Online:
The Hippo Pathway

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1893))

Abstract

The Hippo pathway utilizes a well-characterized Ser/Thr kinase cascade to control the downstream effectors, Yap and Taz. In addition, Yap/Taz and other Hippo pathway components are directly regulated by tyrosine kinases (TKs). The methodological strategies described here use the example of the c-Abl non-receptor TK and the Yap substrate to outline the steps used to identify and to validate tyrosine phosphorylation sites, including bioinformatic approaches, ectopic expression of proteins in transfected tissue culture cells, and mutagenesis of endogenous proteins by CRISPR-Cas9. These general strategies can be applied to investigate regulation of protein signaling moieties by tyrosine phosphorylation in the context of distinct TKs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meng Z, Moroishi T, Guan KL (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30(1):1–17. https://doi.org/10.1101/gad.274027.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Reuven N, Shanzer M, Shaul Y (2015) Tyrosine phosphorylation of WW proteins. Exp Biol Med (Maywood) 240(3):375–382. https://doi.org/10.1177/1535370214565991

    Article  CAS  Google Scholar 

  3. Pluk H, Dorey K, Superti-Furga G (2002) Autoinhibition of c-Abl. Cell 108(2):247–259

    Article  CAS  PubMed  Google Scholar 

  4. Brown MT, Cooper JA (1996) Regulation, substrates and functions of src. Biochim Biophys Acta 1287(2–3):121–149

    PubMed  Google Scholar 

  5. Sudol M (1994) Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene 9(8):2145–2152

    CAS  PubMed  Google Scholar 

  6. Zaidi SK, Sullivan AJ, Medina R, Ito Y, van Wijnen AJ, Stein JL, Lian JB, Stein GS (2004) Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription. EMBO J 23(4):790–799. https://doi.org/10.1038/sj.emboj.7600073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matsumoto Y, La Rose J, Kent OA, Wagner MJ, Narimatsu M, Levy AD, Omar MH, Tong J, Krieger JR, Riggs E, Storozhuk Y, Pasquale J, Ventura M, Yeganeh B, Post M, Moran MF, Grynpas MD, Wrana JL, Superti-Furga G, Koleske AJ, Pendergast AM, Rottapel R (2016) Reciprocal stabilization of ABL and TAZ regulates osteoblastogenesis through transcription factor RUNX2. J Clin Invest 126(12):4482–4496. https://doi.org/10.1172/JCI87802

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rosenbluh J, Nijhawan D, Cox AG, Li X, Neal JT, Schafer EJ, Zack TI, Wang X, Tsherniak A, Schinzel AC, Shao DD, Schumacher SE, Weir BA, Vazquez F, Cowley GS, Root DE, Mesirov JP, Beroukhim R, Kuo CJ, Goessling W, Hahn WC (2012) Beta-catenin-driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis. Cell 151(7):1457–1473. https://doi.org/10.1016/j.cell.2012.11.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vlahov N, Scrace S, Soto MS, Grawenda AM, Bradley L, Pankova D, Papaspyropoulos A, Yee KS, Buffa F, Goding CR, Timpson P, Sibson N, O'Neill E (2015) Alternate RASSF1 transcripts control SRC activity, E-cadherin contacts, and YAP-mediated invasion. Curr Biol 25(23):3019–3034. https://doi.org/10.1016/j.cub.2015.09.072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taniguchi K, Wu LW, Grivennikov SI, de Jong PR, Lian I, Yu FX, Wang K, Ho SB, Boland BS, Chang JT, Sandborn WJ, Hardiman G, Raz E, Maehara Y, Yoshimura A, Zucman-Rossi J, Guan KL, Karin M (2015) A gp130-Src-YAP module links inflammation to epithelial regeneration. Nature 519(7541):57–62. https://doi.org/10.1038/nature14228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Taniguchi K, Moroishi T, de Jong PR, Krawczyk M, Grebbin BM, Luo H, Xu RH, Golob-Schwarzl N, Schweiger C, Wang K, Di Caro G, Feng Y, Fearon ER, Raz E, Kenner L, Farin HF, Guan KL, Haybaeck J, Datz C, Zhang K, Karin M (2017) YAP-IL-6ST autoregulatory loop activated on APC loss controls colonic tumorigenesis. Proc Natl Acad Sci U S A 114(7):1643–1648. https://doi.org/10.1073/pnas.1620290114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Byun MR, Hwang JH, Kim AR, Kim KM, Park JI, Oh HT, Hwang ES, Hong JH (2017) SRC activates TAZ for intestinal tumorigenesis and regeneration. Cancer Lett 410:32–40. https://doi.org/10.1016/j.canlet.2017.09.003

    Article  CAS  PubMed  Google Scholar 

  13. Levy D, Reuven N, Shaul Y (2008) A regulatory circuit controlling Itch-mediated p73 degradation by Runx. J Biol Chem 283(41):27462–27468. https://doi.org/10.1074/jbc.M803941200

    Article  CAS  PubMed  Google Scholar 

  14. Keshet R, Adler J, Ricardo Lax I, Shanzer M, Porat Z, Reuven N, Shaul Y (2015) C-Abl antagonizes the YAP oncogenic function. Cell Death Differ 22(6):935–945. https://doi.org/10.1038/cdd.2014.182

    Article  CAS  PubMed  Google Scholar 

  15. Keshet R, Reuven N, Shaul Y (2015) C-Abl forces YAP to switch sides. Mol Cell Oncol 2(3):e995006. https://doi.org/10.4161/23723556.2014.995006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sudol M (2013) YAP1 oncogene and its eight isoforms. Oncogene 32(33):3922. https://doi.org/10.1038/onc.2012.520

    Article  CAS  PubMed  Google Scholar 

  17. Huang H, Woo AJ, Waldon Z, Schindler Y, Moran TB, Zhu HH, Feng GS, Steen H, Cantor AB (2012) A Src family kinase-Shp2 axis controls RUNX1 activity in megakaryocyte and T-lymphocyte differentiation. Genes Dev 26(14):1587–1601. https://doi.org/10.1101/gad.192054.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Agami R, Blandino G, Oren M, Shaul Y (1999) Interaction of c-Abl and p73alpha and their collaboration to induce apoptosis. Nature 399(6738):809–813. https://doi.org/10.1038/21697

    Article  CAS  PubMed  Google Scholar 

  19. Li P, Silvis MR, Honaker Y, Lien WH, Arron ST, Vasioukhin V (2016) alphaE-catenin inhibits a Src-YAP1 oncogenic module that couples tyrosine kinases and the effector of Hippo signaling pathway. Genes Dev 30(7):798–811. https://doi.org/10.1101/gad.274951.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xiao L, Chen D, Hu P, Wu J, Liu W, Zhao Y, Cao M, Fang Y, Bi W, Zheng Z, Ren J, Ji G, Wang Y, Yuan Z (2011) The c-Abl-MST1 signaling pathway mediates oxidative stress-induced neuronal cell death. J Neurosci 31(26):9611–9619. https://doi.org/10.1523/JNEUROSCI.0035-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu W, Wu J, Xiao L, Bai Y, Qu A, Zheng Z, Yuan Z (2012) Regulation of neuronal cell death by c-Abl-Hippo/MST2 signaling pathway. PLoS One 7(5):e36562. https://doi.org/10.1371/journal.pone.0036562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reuven N, Adler J, Meltser V, Shaul Y (2013) The Hippo pathway kinase Lats2 prevents DNA damage-induced apoptosis through inhibition of the tyrosine kinase c-Abl. Cell Death Differ 20(10):1330–1340. https://doi.org/10.1038/cdd.2013.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shanzer M, Ricardo-Lax I, Keshet R, Reuven N, Shaul Y (2015) The polyomavirus middle T-antigen oncogene activates the Hippo pathway tumor suppressor Lats in a Src-dependent manner. Oncogene 34(32):4190–4198. https://doi.org/10.1038/onc.2014.347

    Article  CAS  PubMed  Google Scholar 

  24. Shanzer M, Adler J, Ricardo-Lax I, Reuven N, Shaul Y (2017) The nonreceptor tyrosine kinase c-Src attenuates SCF(beta-TrCP) E3-ligase activity abrogating Taz proteasomal degradation. Proc Natl Acad Sci U S A 114(7):1678–1683. https://doi.org/10.1073/pnas.1610223114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Levy D, Adamovich Y, Reuven N, Shaul Y (2008) Yap1 phosphorylation by c-Abl is a critical step in selective activation of proapoptotic genes in response to DNA damage. Mol Cell 29(3):350–361. https://doi.org/10.1016/j.molcel.2007.12.022

    Article  CAS  PubMed  Google Scholar 

  26. PhosphositePlus. http://www.phosphosite.org/homeAction.action. Accessed 9 Jan 2018

  27. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43(Database issue):D512–D520. https://doi.org/10.1093/nar/gku1267

    Article  CAS  PubMed  Google Scholar 

  28. Server N. http://www.cbs.dtu.dk/services/NetPhos/

  29. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4(6):1633–1649. https://doi.org/10.1002/pmic.200300771

    Article  CAS  PubMed  Google Scholar 

  30. PhosphoELM. http://phospho.elm.eu.org/links.html

  31. Dinkel H, Chica C, Via A, Gould CM, Jensen LJ, Gibson TJ, Diella F (2011) Phospho.ELM: a database of phosphorylation sites—update 2011. Nucleic Acids Res 39(Database issue):D261–D267. https://doi.org/10.1093/nar/gkq1104

    Article  CAS  PubMed  Google Scholar 

  32. GPS. http://gps.biocuckoo.org/

  33. Xue Y, Liu Z, Cao J, Ma Q, Gao X, Wang Q, Jin C, Zhou Y, Wen L, Ren J (2011) GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection. Protein Eng Des Sel 24(3):255–260. https://doi.org/10.1093/protein/gzq094

    Article  CAS  PubMed  Google Scholar 

  34. Scansite. http://scansite.mit.edu/

  35. Obenauer JC, Cantley LC, Yaffe MB (2003) Scansite 2.0: proteome-wide prediction of cell signaling interactions using short sequence motifs. Nucleic Acids Res 31(13):3635–3641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. ELM. http://elm.eu.org/

  37. Dinkel H, Van Roey K, Michael S, Kumar M, Uyar B, Altenberg B, Milchevskaya V, Schneider M, Kuhn H, Behrendt A, Dahl SL, Damerell V, Diebel S, Kalman S, Klein S, Knudsen AC, Mader C, Merrill S, Staudt A, Thiel V, Welti L, Davey NE, Diella F, Gibson TJ (2016) ELM 2016—data update and new functionality of the eukaryotic linear motif resource. Nucleic Acids Res 44(D1):D294–D300. https://doi.org/10.1093/nar/gkv1291

    Article  CAS  PubMed  Google Scholar 

  38. Druker BJ (2002) Perspectives on the development of a molecularly targeted agent. Cancer Cell 1(1):31–36

    Article  CAS  PubMed  Google Scholar 

  39. Weisberg E, Manley P, Mestan J, Cowan-Jacob S, Ray A, Griffin JD (2006) AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br J Cancer 94(12):1765–1769. https://doi.org/10.1038/sj.bjc.6603170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gray NS, Fabbro D (2014) Discovery of allosteric BCR-ABL inhibitors from phenotypic screen to clinical candidate. Methods Enzymol 548:173–188. https://doi.org/10.1016/B978-0-12-397918-6.00007-0

    Article  CAS  PubMed  Google Scholar 

  41. Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K, Castaneda S, Cornelius LA, Das J, Doweyko AM, Fairchild C, Hunt JT, Inigo I, Johnston K, Kamath A, Kan D, Klei H, Marathe P, Pang S, Peterson R, Pitt S, Schieven GL, Schmidt RJ, Tokarski J, Wen ML, Wityak J, Borzilleri RM (2004) Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem 47(27):6658–6661. https://doi.org/10.1021/jm049486a

    Article  CAS  PubMed  Google Scholar 

  42. Hanke JH, Gardner JP, Dow RL, Changelian PS, Brissette WH, Weringer EJ, Pollok BA, Connelly PA (1996) Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J Biol Chem 271(2):695–701

    Article  CAS  PubMed  Google Scholar 

  43. Dephoure N, Gould KL, Gygi SP, Kellogg DR (2013) Mapping and analysis of phosphorylation sites: a quick guide for cell biologists. Mol Biol Cell 24(5):535–542. https://doi.org/10.1091/mbc.E12-09-0677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278. https://doi.org/10.1016/j.cell.2014.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Deskgen. http://www.deskgen.com/landing/cloud.html

  46. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. page Cr. http://www.genome-engineering.org/crispr/wp-content/uploads/2014/05/CRISPR-Reagent-Description-Rev20140509.pdf

  48. Hobbs S, Jitrapakdee S, Wallace JC (1998) Development of a bicistronic vector driven by the human polypeptide chain elongation factor 1alpha promoter for creation of stable mammalian cell lines that express very high levels of recombinant proteins. Biochem Biophys Res Commun 252(2):368–372. https://doi.org/10.1006/bbrc.1998.9646

    Article  CAS  PubMed  Google Scholar 

  49. Barila D, Superti-Furga G (1998) An intramolecular SH3-domain interaction regulates c-Abl activity. Nat Genet 18(3):280–282. https://doi.org/10.1038/ng0398-280

    Article  CAS  PubMed  Google Scholar 

  50. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosef Shaul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reuven, N., Shanzer, M., Shaul, Y. (2019). Hippo Pathway Regulation by Tyrosine Kinases. In: Hergovich, A. (eds) The Hippo Pathway. Methods in Molecular Biology, vol 1893. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8910-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8910-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8909-6

  • Online ISBN: 978-1-4939-8910-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics