Skip to main content

Regulation of YAP/TAZ Activity by Mechanical Cues: An Experimental Overview

  • Protocol
  • First Online:
The Hippo Pathway

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1893))

Abstract

YAP/TAZ activity is regulated by a complex network of signals that include the Hippo pathway, cell polarity complexes, and signaling receptors of the RTK, GPCR, and WNT pathways and by a seamlessly expanding number of intracellular cues including energy and mevalonate metabolism. Among these inputs, we here concentrate on mechanical cues embedded in the extracellular matrix (ECM) microenvironment, which are key regulators of YAP/TAZ activity. We review the techniques that have been used to study mechano-regulation of YAP/TAZ, including conceptual and practical considerations on how these experiments should be designed and controlled. Finally, we briefly review the most appropriate techniques to monitor YAP/TAZ activity in these experiments and their significance to study the mechanisms linking YAP/TAZ to mechanical cues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Piccolo S, Dupont S, Cordenonsi M (2014) The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev 94:1287–1312. https://doi.org/10.1152/physrev.00005.2014

    Article  CAS  PubMed  Google Scholar 

  2. Halder G, Dupont S, Piccolo S (2012) Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 13:591–600. https://doi.org/10.1038/nrm3416

    Article  CAS  PubMed  Google Scholar 

  3. Dupont S (2016) Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res 343:42–53. https://doi.org/10.1016/j.yexcr.2015.10.034

    Article  CAS  PubMed  Google Scholar 

  4. Eyckmans J, Boudou T, Yu X, Chen CS (2011) A Hitchhiker’s guide to mechanobiology. Dev Cell 21:35–47. https://doi.org/10.1016/j.devcel.2011.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tang Y, Rowe RG, Botvinick EL, Kurup A, Putnam AJ, Seiki M et al (2013) MT1-MMP-dependent control of skeletal stem cell commitment via a β1-integrin/YAP/TAZ signaling axis. Dev Cell 25:402–416. https://doi.org/10.1016/j.devcel.2013.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME, Ordóñez-Morán P et al (2016) Designer matrices for intestinal stem cell and organoid culture. Nature 539:560. https://doi.org/10.1038/nature20168

    Article  CAS  PubMed  Google Scholar 

  7. Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F, Elvassore N et al (2013) A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154:1047–1059. https://doi.org/10.1016/j.cell.2013.07.042

    Article  CAS  PubMed  Google Scholar 

  8. Schwartz MA, Chen CS (2013) Cell biology. Deconstructing dimensionality, Science (New York, NY) 339:402–404. https://doi.org/10.1126/science.1233814.

    Article  CAS  Google Scholar 

  9. Nelson CM, VanDuijn MM, Inman JL, Fletcher DA, Bissell MJ (2006) Tissue geometry determines sites of mammary branching morphogenesis in Organotypic cultures. Science (New York, NY) 314:298–300. https://doi.org/10.1126/science.1131000.

    Article  CAS  Google Scholar 

  10. Folkman J, Moscona A (1978) Role of cell shape in growth control. Nature 273:345–349

    Article  CAS  PubMed  Google Scholar 

  11. Mooney D, Hansen L, Vacanti J, Langer R, Farmer S, Ingber D (1992) Switching from differentiation to growth in hepatocytes: control by extracellular matrix. J Cell Physiol 151:497–505. https://doi.org/10.1002/jcp.1041510308

    Article  CAS  PubMed  Google Scholar 

  12. Ingber DE (1990) Fibronectin controls capillary endothelial cell growth by modulating cell shape. Proc Natl Acad Sci U S A 87:3579–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Roskelley CD, Desprez PY, Bissell MJ (1994) Extracellular matrix-dependent tissue-specific gene expression in mammary epithelial cells requires both physical and biochemical signal transduction. Proc Natl Acad Sci U S A 91:12378–12382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science (New York, NY) 276:1425–1428

    Article  CAS  Google Scholar 

  15. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495. https://doi.org/10.1016/S1534-5807(04)00075-9

    Article  CAS  PubMed  Google Scholar 

  16. Watt FM, Jordan PW, O'Neill CH (1988) Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc Natl Acad Sci U S A 85:5576–5580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689. https://doi.org/10.1016/j.cell.2006.06.044

    Article  CAS  PubMed  Google Scholar 

  18. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183. https://doi.org/10.1038/nature10137

    Article  CAS  PubMed  Google Scholar 

  19. Nelson CM, Jean RP, Tan JL, Liu WF, Sniadecki NJ, Spector AA et al (2005) Emergent patterns of growth controlled by multicellular form and mechanics. Proc Natl Acad Sci U S A 102:11594–11599. https://doi.org/10.1073/pnas.0502575102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Malinverno C, Corallino S, Giavazzi F, Bergert M, Li Q, Leoni M et al (2017) Endocytic reawakening of motility in jammed epithelia. Nat Mater 16:587–596. https://doi.org/10.1038/nmat4848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J et al (2007) Inactivation of YAP oncoprotein by the hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21:2747–2761. https://doi.org/10.1101/gad.1602907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Puliafito A, Hufnagel L, Neveu P, Streichan S, Sigal A, Fygenson DK et al (2012) Collective and single cell behavior in epithelial contact inhibition. Proc Natl Acad Sci 109:739–744. https://doi.org/10.1073/pnas.1007809109

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wada K-I, Itoga K, Okano T, Yonemura S, Sasaki H (2011) Hippo pathway regulation by cell morphology and stress fibers. Development 138:3907–3914. https://doi.org/10.1242/dev.070987

    Article  CAS  PubMed  Google Scholar 

  24. Benham-Pyle BW, Pruitt BL, Nelson WJ (2015) Mechanical strain induces E-cadherin-dependent Yap1 and -catenin activation to drive cell cycle entry. Science (New York, NY) 348:1024–1027. https://doi.org/10.1126/science.aaa4559.

    Article  CAS  Google Scholar 

  25. Zhou D, Conrad C, Xia F, Park J-S, Payer B, Yin Y et al (2009) Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16:425–438. https://doi.org/10.1016/j.ccr.2009.09.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Silvis MR, Kreger BT, Lien W-H, Klezovitch O, Rudakova GM, Camargo FD et al (2011) α-Catenin is a tumor suppressor that controls cell accumulation by regulating the localization and activity of the transcriptional coactivator Yap1. Sci Signal 4:ra33. https://doi.org/10.1126/scisignal.2001823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schlegelmilch K, Mohseni M, Kirak O, Pruszak J, Rodriguez JR, Zhou D et al (2011) Yap1 acts downstream of α-catenin to control epidermal proliferation. Cell 144:782–795. https://doi.org/10.1016/j.cell.2011.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C et al (2011) The hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147:759–772. https://doi.org/10.1016/j.cell.2011.09.048

    Article  CAS  PubMed  Google Scholar 

  29. Szymaniak AD, Mahoney JE, Cardoso WV, Varelas X (2015) Crumbs3-mediated polarity directs airway epithelial cell fate through the Hippo pathway effector Yap. Dev Cell 34:283–296. https://doi.org/10.1016/j.devcel.2015.06.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lv X-B, Liu C-Y, Wang Z, Sun Y-P, Xiong Y, Lei Q-Y et al (2015) PARD3 induces TAZ activation and cell growth by promoting LATS1 and PP1 interaction. EMBO Rep 16:975. https://doi.org/10.15252/embr.201439951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang H-L, Wang S, Yin M-X, Dong L, Wang C, Wu W et al (2013) Par-1 regulates tissue growth by influencing hippo phosphorylation status and hippo-Salvador association. PLoS Biol 11:e1001620. https://doi.org/10.1371/journal.pbio.1001620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heidary Arash E, Shiban A, Song S, Attisano L (2017) MARK4 inhibits hippo signaling to promote proliferation and migration of breast cancer cells. EMBO Rep 18:420–436. https://doi.org/10.15252/embr.201642455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hirate Y, Hirahara S, Inoue K-I, Kiyonari H, Niwa H, Sasaki H (2015) Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, hippo signaling, and cell positioning in 16-cell stage mouse embryos. Develop Growth Differ 57:544. https://doi.org/10.1111/dgd.12235

    Article  CAS  Google Scholar 

  34. Zhao B, Li L, Wang L, Wang C-Y, Yu J, Guan K-L (2012) Cell detachment activates the hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev 26:54–68. https://doi.org/10.1101/gad.173435.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Elosegui-Artola A, Andreu I, Beedle AEM, Lezamiz A, Uroz M, Kosmalska AJ et al (2017) Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171:1397–1410.e14. https://doi.org/10.1016/j.cell.2017.10.008

    Article  CAS  PubMed  Google Scholar 

  36. Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge JS (2002) The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111:29–40

    Article  CAS  PubMed  Google Scholar 

  37. Schiller HB, Hermann M-R, Polleux J, Vignaud T, Zanivan S, Friedel CC et al (2013) β1- and αv-class integrins cooperate to regulate myosin II during rigidity sensing of fibronectin-based microenvironments. Nat Cell Biol 15:625–636. https://doi.org/10.1038/ncb2747

    Article  CAS  PubMed  Google Scholar 

  38. Elosegui-Artola A, Oria R, Chen Y, Kosmalska A, Pérez-González C, Castro N et al (2016) Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol 18:540–548. https://doi.org/10.1038/ncb3336

    Article  CAS  PubMed  Google Scholar 

  39. Roca-Cusachs P, Gauthier NC, del Rio A, Sheetz MP (2009) Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and Talin enable mechanotransduction. Proc Natl Acad Sci 106:16245–16250. https://doi.org/10.1073/pnas.0902818106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Taccioli C, Sorrentino G, Zannini A, Caroli J, Beneventano D, Anderlucci L et al (2015) MDP, a database linking drug response data to genomic information, identifies dasatinib and statins as a combinatorial strategy to inhibit YAP/TAZ in cancer cells. Oncotarget 6:38854–38865. https://doi.org/10.18632/oncotarget.5749

    Article  PubMed  PubMed Central  Google Scholar 

  41. Oku Y, Nishiya N, Shito T, Yamamoto R, Yamamoto Y, Oyama C et al (2015) Small molecules inhibiting the nuclear localization of YAP/TAZ for chemotherapeutics and chemosensitizers against breast cancers. FEBS Open Bio 5:542–549. https://doi.org/10.1016/j.fob.2015.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim N-G, Gumbiner BM (2015) Adhesion to fibronectin regulates hippo signaling via the FAK-Src-PI3K pathway. J Cell Biol 210:503–515. https://doi.org/10.1083/jcb.201501025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stein PL, Vogel H, Soriano P (1994) Combined deficiencies of Src, Fyn, and yes tyrosine kinases in mutant mice. Genes Dev 8:1999–2007. https://doi.org/10.1101/gad.8.17.1999

    Article  CAS  PubMed  Google Scholar 

  44. Pirone DM, Liu WF, Ruiz SA, Gao L, Raghavan S, Lemmon CA et al (2006) An inhibitory role for FAK in regulating proliferation: a link between limited adhesion and RhoA-ROCK signaling. J Cell Biol 174:277–288. https://doi.org/10.1083/jcb.200510062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Geiger B, Bershadsky A (2001) Assembly and mechanosensory function of focal contacts. Curr Opin Cell Biol 13:584–592. https://doi.org/10.1016/S0955-0674(00)00255-6

    Article  CAS  PubMed  Google Scholar 

  46. Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S et al (2014) Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol 16:357–366. https://doi.org/10.1038/ncb2936

    Article  CAS  PubMed  Google Scholar 

  47. Miralles F, Posern G, Zaromytidou A-I, Treisman R (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113:329–342

    Article  CAS  PubMed  Google Scholar 

  48. Esnault C, Stewart A, Gualdrini F, East P, Horswell S, Matthews N et al (2014) Rho-actin signaling to the MRTF coactivators dominates the immediate transcriptional response to serum in fibroblasts. Genes Dev 28:943–958. https://doi.org/10.1101/gad.239327.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sansores-Garcia L, Bossuyt W, Wada K-I, Yonemura S, Tao C, Sasaki H et al (2011) Modulating F-actin organization induces organ growth by affecting the hippo pathway. EMBO J 30:2325–2335. https://doi.org/10.1038/emboj.2011.157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ren F, Zhang L, Jiang J (2010) Hippo signaling regulates Yorkie nuclear localization and activity through 14-3-3 dependent and independent mechanisms. Dev Biol 337:303–312. https://doi.org/10.1016/j.ydbio.2009.10.046

    Article  CAS  PubMed  Google Scholar 

  51. Chan SW, Lim CJ, Loo LS, Chong YF, Huang C, Hong W (2009) TEADs mediate nuclear retention of TAZ to promote oncogenic transformation. J Biol Chem 284:14347–14358. https://doi.org/10.1074/jbc.M901568200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nil Ege, Anna M Dowbaj, Ming Jiang, Michael Howell, Robert P Jenkins, Erik Sahai. Actin and Src-family kinases regulate nuclear YAP1 and its export. https://doi.org/10.1101/201004

  53. Finch ML, Passman AM, Strauss RP, Yeoh GC, Callus BA (2015) Sub-cellular localisation studies may spuriously detect the yes-associated protein, YAP, in nucleoli leading to potentially invalid conclusions of its function. PLoS One 10:e0114813. https://doi.org/10.1371/journal.pone.0114813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M et al (2015) Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J 34:1349–1370. https://doi.org/10.15252/embj.201490379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sorrentino G, Ruggeri N, Zannini A, Ingallina E, Bertolio R, Marotta C et al (2017) Glucocorticoid receptor signalling activates YAP in breast cancer. Nat Comms 8:14073. https://doi.org/10.1038/ncomms14073

    Article  CAS  Google Scholar 

  56. Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S et al (2012) Role of TAZ as mediator of Wnt signaling. Cell 151:1443–1456. https://doi.org/10.1016/j.cell.2012.11.027

    Article  CAS  PubMed  Google Scholar 

  57. Liu C-Y, Zha Z-Y, Zhou X, Zhang H, Huang W, Zhao D et al (2010) The hippo tumor pathway promotes TAZ degradation by phosphorylating a phosphodegron and recruiting the SCF{beta}-TrCP E3 ligase. J Biol Chem 285:37159–37169. https://doi.org/10.1074/jbc.M110.152942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim M, Kim T, Johnson RL, Lim D-S (2015) Transcriptional co-repressor function of the hippo pathway transducers YAP and TAZ. Cell Rep 11:270. https://doi.org/10.1016/j.celrep.2015.03.015

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sirio Dupont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dupont, S. (2019). Regulation of YAP/TAZ Activity by Mechanical Cues: An Experimental Overview. In: Hergovich, A. (eds) The Hippo Pathway. Methods in Molecular Biology, vol 1893. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8910-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8910-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8909-6

  • Online ISBN: 978-1-4939-8910-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics