Structural Analysis of Exopolysaccharides from Lactic Acid Bacteria

  • Gerrit J. GerwigEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1887)


Production of exopolysaccharides by lactic acid bacteria is a common phenomenon. Structural information of these widely diverse biopolymers is rendered by the monosaccharide composition, the anomeric configurations, the type of glycosidic linkages, the presence of repeating units and noncarbohydrate substituents, and finally the presentation of a chemical molecular structure or composite model. The detailed structural analysis of polysaccharides is a time-consuming pursuit, including the use of different techniques, such as chemical degradation methods (e.g., hydrolysis), separation methods (e.g., SEC-chromatography and HPLC/HPAEC), and identification methods (e.g., GLC-EIMS and 1H/13C NMR spectroscopy). In this chapter, some analytical methods are described and demonstrated for two different exopolysaccharides from lactic acid bacteria.

Key words

Lactobacillus reuteri Lactobacillus fermentum Probiotic bacteria Polysaccharide Monosaccharide analysis Methylation analysis Mass spectrometry NMR spectroscopy 


  1. 1.
    Ruas-Madiedo P, de los Reyes-Gavilán CG (2005) Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Science 88:843–856CrossRefGoogle Scholar
  2. 2.
    Zeidan AA, Poulsen VK, Janzen T, Buldo P, Derkx PMF, Øregaard G, Neves AR (2017) Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev 41:S168–S200CrossRefGoogle Scholar
  3. 3.
    De Vuyst L, De Vin F (2007) Exopolysaccharides from lactic acid bacteria. In: Kamerling JP, Boons GJ, Lee YC, Suzuki A, Taniguchi N, Voragen AGJ (eds) Comprehensive glycoscience—from chemistry to systems biology, Vol. 2. Elsevier Ltd, Oxford, pp 477-519Google Scholar
  4. 4.
    Ruas-Madiedo P, Salazar N, de los Reyes-Gavilán CG (2009) Biosynthesis and chemical composition of exopolysaccharides produced by lactic acid bacteria. In: Ullrich M (ed.) Bacterial Polysaccharides: Current Innovations and Future Trends. Caister Academic Press, pp279-310Google Scholar
  5. 5.
    Notararigo S, Nácher-Vázquez M, Ibarburu I, Werning ML, Fernández de Palencia P, Dueñas MT, Aznar R, López P, Prieto A (2013) Comparative analysis of production and purification of homo- and hetero-polysaccharides produced by lactic acid bacteria. Carbohydr Polym 93:57–64CrossRefGoogle Scholar
  6. 6.
    Flemming HC, Wingender J (2010) The biofilm matrix. Nature Rev Microbiol 8:623–633CrossRefGoogle Scholar
  7. 7.
    Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015CrossRefGoogle Scholar
  8. 8.
    Badel S, Bernardi T, Michaud P (2011) New perspectives for Lactobacilli exopolysaccharides. Biotechnol Adv 29:54–66CrossRefGoogle Scholar
  9. 9.
    Freitas F, Alves VD, Reis MAM (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends in Biotechnol 29:388–398CrossRefGoogle Scholar
  10. 10.
    Patel S, Majumber A, Goyal A (2012) Potentials of exopolysaccharides from lactic acid bacteria. Indian J Microbiol 52:3–12CrossRefGoogle Scholar
  11. 11.
    Patel A, Prajapati JB (2013) Food and health applications of exopolysaccharides produced by lactic acid bacteria. Adv Dairy Res 1:1–7CrossRefGoogle Scholar
  12. 12.
    Torino MI, Font de Valdez G, Mozzi F (2015) Biopolymers from lactic acid bacteria. Novel applications if foods and beverages. Front Microbiol 6:834. Scholar
  13. 13.
    Ryan PM, Ross RP, Fitzgerald GF, Caplice NM, Stanton C (2015) Sugar coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food and Function 6:679–693CrossRefGoogle Scholar
  14. 14.
    Zannini E, Waters DM, Coffey A, Arendt EK (2016) Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl Microbiol Biotechnol 100:1121–1135CrossRefGoogle Scholar
  15. 15.
    Baruah R, Das D, Goyal A (2016) Heteropolysaccharides from lactic acid bacteria: Current trends and applications. J Prob Health 4:141. Scholar
  16. 16.
    Mende S, Rohm H, Jaros D (2016) Influence of exopolysaccharides on the structure, texture, stability and sensory properties of yogurt and related products. Int Dairy J 52:57–71CrossRefGoogle Scholar
  17. 17.
    Lynch KM, Zannini E, Coffey A, Arendt EK (2018) Lactic acid bacteria exopolysaccharides in foods and beverages: isolation, properties, characterization, and health benefits. Annu Rev Food Sci Technol 9:1CrossRefGoogle Scholar
  18. 18.
    Welman AD, Maddox IS (2003) Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends in Biotechnol 21:269–274CrossRefGoogle Scholar
  19. 19.
    Mozzi F, Van Ingelgem F, Hébert EM, van der Meulen R, Foulquié-Moreno MR, Font de Valdez G, De Vuyst L (2006) Diversity of heteropolysaccharides-producing lactic acid bacterium strains and their biopolymers. Appl Environ Microbiol 72:4431–4435CrossRefGoogle Scholar
  20. 20.
    Laws A, Gu Y, Marshall V (2001) Biosynthesis, characterization, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol Adv 19:597–625CrossRefGoogle Scholar
  21. 21.
    Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot RM, Remaud-Simeon M (2001) Homopolysaccharides from lactic acid bacteria. Int Dairy J 11:675–685CrossRefGoogle Scholar
  22. 22.
    Galle S, Schwab C, Arendt EK, Gänzle MG (2011) Structural and rheological characterisation of heteropolysaccharides produced by lactic acid bacteria in wheat and sorghum sourdough. Food Microbiol 28:547–553CrossRefGoogle Scholar
  23. 23.
    Wang J, Zhao X, Yang Y, Zhao A, Yang Z (2015) Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. Int J Biol Macromol 74:119–126CrossRefGoogle Scholar
  24. 24.
    Nácher-Vázquez M, Ballesteros N, Canales A, Rodriguez Saint-Jean S, Pérez-Prieto A, Aznar R, López P (2015) Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses. Carbohydr Polym 124:292–301CrossRefGoogle Scholar
  25. 25.
    Caggianiello G, Kleerebezem M, Spano G (2016) Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl Microbiol Biotechnol 100:3877–3886CrossRefGoogle Scholar
  26. 26.
    Van Geel-Schutten GH, Faber EJ, Smit E, Bonting K, Smith MR, ten Brink B, Kamerling JP, Vliegenthart JFG, Dijkhuizen L (1999) Biochemical and structural characterization of the glucan and fructan exopolysaccharides synthesized by the Lactobacillus reuteri wild-type strain and by mutant strains. Appl Environ Microbiol 65:3008–3014PubMedPubMedCentralGoogle Scholar
  27. 27.
    Van Leeuwen SS, Kralj S, Van Geel-Schutten IH, Gerwig GJ, Dijkhuizen L, Kamerling JP (2008a) Structural analysis of the α-D-glucan (EPS180) produced by the Lactobacillus reuteri strain 180 glucansucrase GTF180 enzyme. Carbohydr Res 343:1237–1250CrossRefGoogle Scholar
  28. 28.
    Leemhuis H, Pijning T, Dobruchowska JM, Van Leeuwen SS, Kralj S, Dijkstra BW, Dijkhuizen L (2013) Glucansucrases: Three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. J Biotechnol 163:250–272CrossRefGoogle Scholar
  29. 29.
    Dertli E, Colquhoun IJ, Côté GL, Le Gall G, Narbad A (2018) Structural analysis of the α-D-glucan produced by the sourdough isolate Lactobacillus brevis E25. Food Chem 242:45–52CrossRefGoogle Scholar
  30. 30.
    Leo F, Hashida S, Kumagai D, Uchida K, Motoshima H, Arai I, Asakuma S, Fukuda K, Urashima T (2007) Studies on a neutral exopolysaccharide of Lactobacillus fermentum TDS030603. J Appl Glycosci 54:223–229CrossRefGoogle Scholar
  31. 31.
    Gerwig GJ, Dobruchowska JM, Shi T, Urashima T, Fukuda K (2013) Structure determination of the exopolysaccharide of lactobacillus fermentum TDS030603 – A revision. Carbohydr Res 378:84–90CrossRefGoogle Scholar
  32. 32.
    Aryantini NPD, Prajapati JB, Urashima T, Fukuda K (2017) Complete genome sequence of Lactobacillus fermentum MTCC 25067 (formerly TDS030603), a viscous exopolysaccharide-producing strain isolated from Indian fermented milk. Genome Announc 5(13):e00091-e00017Google Scholar
  33. 33.
    Kamerling JP, Gerwig GJ (2007) Strategies for structural analysis of carbohydrates. In: Kamerling JP, Boons GJ, Lee YC, Suzuki A, Taniguchi N, Voragen AGJ (eds) Comprehensive glycoscience—from chemistry to systems biology, Vol. 1. Elsevier Ltd, Oxford, pp1-68Google Scholar
  34. 34.
    Cataldi TR, Campa C, De Benedetto GE (2000) Carbohydrate analysis by high-performance anion-exchange chromatography with pulsed amperometric detection: the potential is still growing. Fresenius J Anal Chem 368:739–758CrossRefGoogle Scholar
  35. 35.
    Gerwig GJ, Kamerling JP, Vliegenthart JFG (1978) Determination of the D and L configuration of neutral monosaccharides by high-resolution capillary GLC. Carbohydr Res 62:349–357CrossRefGoogle Scholar
  36. 36.
    Gerwig GJ, Kamerling JP, Vliegenthart JFG (1979) Determination of the absolute configuration of monosaccharides in complex carbohydrates by capillary GLC. Carbohydr Res 77:1–7CrossRefGoogle Scholar
  37. 37.
    Vliegenthart JFG, Kamerling JP (2007) 1H NMR structural-reporter-group concepts in carbohydrate analysis. In: JP Kamerling, GJ Boons, YC Lee, A Suzuki, N Taniguchi, AGJ Voragen, (Eds.), Comprehensive glycoscience—from chemistry to systems biology, Elsevier Ltd, Oxford, pp133-191Google Scholar
  38. 38.
    Van Leeuwen SS, Leeflang BR, Gerwig GJ, Kamerling JP (2008b) Development of a 1H NMR structural-reporter-group concept for the primary structural characterization of α-D-glucans. Carbohydr Res 343:1114–1119CrossRefGoogle Scholar
  39. 39.
    Ciucanu I, Kerek F (1984) A simple and rapid method for the permethylation of carbohydrate. Carbohydr Res 131:209–217CrossRefGoogle Scholar
  40. 40.
    Fontana C, Li S, Yang Z, Widmalm G (2015) Structural studies of the exopolysaccharide from Lactobacillus plantarum C88 using NMR spectroscopy and the program CASPER. Carbohydr Res 402:87–94CrossRefGoogle Scholar
  41. 41.
    Lundborg M, Widmalm G (2011) Structural analysis of glycans by NMR chemical shift prediction. Anal Chem 83:1514–1517CrossRefGoogle Scholar
  42. 42.
    Lundborg M, Fontana C, Widmalm G (2001) Automatic structure determination of regular polysaccharides based solely on NMR spectroscopy. Biomacromolecules 12:3851–3855CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands

Personalised recommendations