Skip to main content

Proteolytic Activation of Bmps: Analysis of Cleavage in Xenopus Oocytes and Embryos

  • Protocol
  • First Online:
  • 975 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1891))

Abstract

Bone morphogenetic proteins (Bmps) are synthesized as inactive precursors that are cleaved to generate active ligands, along with prodomain fragments that can modulate growth factor activity. Here we provide three protocols that can be used to examine the process of proteolytic activation of Bmps. The first protocol describes how to generate radiolabeled Bmp precursor proteins in Xenopus oocytes and then analyze the time course of precursor cleavage by recombinant enzymes in vitro. The second protocol details how to analyze cleavage of radiolabeled precursor proteins in Xenopus oocytes over time using pulse-chase analysis and autoradiography. This protocol can also be used to analyze folding and cleavage of radiolabeled precursor proteins at steady state. Finally, the third protocol details methods for isolating Bmp cleavage products from the blastocoele of Xenopus embryos and then analyzing them on immunoblots.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A (2011) Bone morphogenetic proteins: a critical review. Cell Signal 23:609–620

    Article  CAS  Google Scholar 

  2. Seidah NG, Prat A (2012) The biology and therapeutic targeting of the proprotein convertases. Nat Rev Drug Discov 11:367–383

    Article  CAS  Google Scholar 

  3. Constam DB (2014) Regulation of TGFbeta and related signals by precursor processing. Semin Cell Dev Biol 32:85–97

    Article  CAS  Google Scholar 

  4. Scamuffa N, Calvo F, Chretien M, Seidah NG, Khatib AM (2006) Proprotein convertases: lessons from knockouts. FASEB J 20:1954–1963

    Article  CAS  Google Scholar 

  5. Cui Y, Hackenmiller R, Berg L, Jean F, Nakayama T, Thomas G, Christian JL (2001) The activity and signaling range of mature BMP-4 is regulated by sequential cleavage at two sites within the prodomain of the precursor. Genes Dev 15:2797–2802

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Degnin C, Jean F, Thomas G, Christian JL (2004) Cleavages within the prodomain direct intracellular trafficking and degradation of mature bone morphogenetic protein-4. Mol Biol Cell 15:5012–5020

    Article  CAS  Google Scholar 

  7. Gregory KE, Ono RN, Charbonneau NL, Kuo CL, Keene DR, Bachinger HP, Sakai LY (2005) The prodomain of BMP-7 targets the BMP-7 complex to the extracellular matrix. J Biol Chem 280:27970–27980

    Article  CAS  Google Scholar 

  8. Jones WK, Richmond EA, White K, Sasak H, Kusmik W, Smart J, Oppermann H, Rueger DC, Tucker RF (1994) Osteogenic protein-1 (OP-1) expression and processing in Chinese hamster ovary cells: isolation of a soluble complex containing the mature and pro-domains of OP-1. Growth Factors 11:215–225

    Article  CAS  Google Scholar 

  9. Kunnapuu J, Bjorkgren I, Shimmi O (2009) The Drosophila DPP signal is produced by cleavage of its proprotein at evolutionary diversified furin-recognition sites. Proc Natl Acad Sci U S A 106:8501–8506

    Article  CAS  Google Scholar 

  10. Kunnapuu J, Tauscher PM, Tiusanen N, Nguyen M, Loytynoja A, Arora K, Shimmi O (2014) Cleavage of the Drosophila screw prodomain is critical for a dynamic BMP morphogen gradient in embryogenesis. Dev Biol 389:149–159

    Article  CAS  Google Scholar 

  11. Mi LZ, Brown CT, Gao Y, Tian Y, Le VQ, Walz T, Springer TA (2015) Structure of bone morphogenetic protein 9 procomplex. Proc Natl Acad Sci U S A 112:3710–3715

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sopory S, Kwon S, Wehrli M, Christian JL (2010) Regulation of Dpp activity by tissue-specific cleavage of an upstream site within the prodomain. Dev Biol 346:102–112

    Article  CAS  Google Scholar 

  13. Harrison CA, Al-Musawi SL, Walton KL (2011) Prodomains regulate the synthesis, extracellular localisation and activity of TGF-beta superfamily ligands. Growth Factors 29:174–186

    Article  CAS  Google Scholar 

  14. Sopory S, Nelsen SM, Degnin C, Wong C, Christian JL (2006) Regulation of bone morphogenetic protein-4 activity by sequence elements within the prodomain. J Biol Chem 281:34021–34031

    Article  CAS  Google Scholar 

  15. Cui Y, Jean F, Thomas G, Christian JL (1998) BMP-4 is proteolytically activated by furin and/or PC6 during vertebrate embryonic development. EMBO J 17:4735–4743

    Article  CAS  Google Scholar 

  16. Hawley SH, Wunnenberg-Stapleton K, Hashimoto C, Laurent MN, Watabe T, Blumberg BW, Cho KW (1995) Disruption of BMP signals in embryonic Xenopus ectoderm leads to direct neural induction. Genes Dev 9:2923–2935

    Article  CAS  Google Scholar 

  17. Nelsen SM, Christian JL (2009) Site-specific cleavage of BMP4 by furin, PC6, and PC7. J Biol Chem 284:27157–27166

    Article  CAS  Google Scholar 

  18. Freeze HH, Kranz C (2010) Endoglycosidase and glycoamidase release of N-linked glycans. Curr Protoc Mol Biol Chapter 17: Unit 17.13A

    Google Scholar 

  19. Kwon S, Christian JL (2011) Sortilin associates with transforming growth factor-beta family proteins to enhance lysosome-mediated degradation. J Biol Chem 286:21876–21885

    Article  CAS  Google Scholar 

  20. Neugebauer JM, Kwon S, Kim HS, Donley N, Tilak A, Sopory S, Christian JL (2015) The prodomain of BMP4 is necessary and sufficient to generate stable BMP4/7 heterodimers with enhanced bioactivity in vivo. Proc Natl Acad Sci U S A 112:E2307–E2316

    Article  CAS  Google Scholar 

  21. Tilak A, Nelsen SM, Kim HS, Donley N, McKnite A, Lee H, Christian JL (2014) Simultaneous rather than ordered cleavage of two sites within the BMP4 prodomain leads to loss of ligand in mice. Development 141:3062–3071

    Article  CAS  Google Scholar 

  22. Birsoy B, Berg L, Williams PH, Smith JC, Wylie CC, Christian JL, Heasman J (2005) XPACE4 is a localized pro-protein convertase required for mesoderm induction and the cleavage of specific TGFbeta proteins in Xenopus development. Development 132:591–602

    Article  CAS  Google Scholar 

  23. Mimoto MS, Christian JL (2011) Manipulation of gene function in Xenopus laevis. Methods Mol Biol 770:55–75

    Article  CAS  Google Scholar 

  24. Dumont JN (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol 136:153–179

    Article  CAS  Google Scholar 

  25. Smith LD, Xu WL, Varnold RL (1991) Oogenesis and oocyte isolation. Methods Cell Biol 36:45–60

    Article  CAS  Google Scholar 

  26. Jean F, Stella K, Thomas L, Liu G, Xiang Y, Reason AJ, Thomas G (1998) alpha1-Antitrypsin Portland, a bioengineered serpin highly selective for furin: application as an antipathogenic agent. Proc Natl Acad Sci U S A 95:7293–7298

    Article  CAS  Google Scholar 

  27. Sopory S, Christian J (2006) Regulation of TGF-ß family activity by proprotein processing. In: Whitman M, Sater A (eds) Analysis of growth factor signaling in embryos. CRC Press LLC, Boca Raton, FL, pp 38–55

    Google Scholar 

  28. Seidah NG, Day R, Hamelin J, Gaspar A, Collard MW, Chretien M (1992) Testicular expression of PC4 in the rat: molecular diversity of a novel germ cell-specific Kex2/subtilisin-like proprotein convertase. Mol Endocrinol 6:1559–1570

    CAS  PubMed  Google Scholar 

  29. Denault JB, Leduc R (1996) Furin/PACE/SPC1: a convertase involved in exocytic and endocytic processing of precursor proteins. FEBS Lett 379:113–116

    Article  CAS  Google Scholar 

  30. Nieuwkoop PD, Faber J (1967) Normal table of Xenopus laevis. North Holland Publishing Co., Amsterdam

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan L. Christian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kim, HS., McKnite, A., Christian, J.L. (2019). Proteolytic Activation of Bmps: Analysis of Cleavage in Xenopus Oocytes and Embryos. In: Rogers, M. (eds) Bone Morphogenetic Proteins. Methods in Molecular Biology, vol 1891. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8904-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8904-1_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8903-4

  • Online ISBN: 978-1-4939-8904-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics