Skip to main content

Heterotopic Ossification in Mouse Models of Fibrodysplasia Ossificans Progressiva

  • Protocol
  • First Online:
Bone Morphogenetic Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1891))

Abstract

Fibrodysplasia ossificans progressiva (FOP), a rare genetic disorder of progressive extra-skeletal ossification, is the most disabling form of heterotopic ossification (HO) in humans. Most people with FOP carry an activating mutation in a BMP type I receptor gene, ACVR1 R206H, that promotes ectopic chondrogenesis and osteogenesis and in turn HO. Advances in elucidating the cellular and molecular events and mechanisms that lead to the ectopic bone formation are being made through the use of genetically engineered mouse models that recapitulate the human disease. We describe methods for inducing heterotopic ossification in a mouse model that conditionally expresses the Acvr1 R206H allele.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Elliott RL, Blobe GC (2005) Role of transforming growth factor beta in human cancer. J Clin Oncol 23(9):2078–2093. https://doi.org/10.1200/jco.2005.02.047

    Article  CAS  PubMed  Google Scholar 

  2. Hayashi Y, Hsiao EC, Sami S, Lancero M, Schlieve CR, Nguyen T, Yano K, Nagahashi A, Ikeya M, Matsumoto Y, Nishimura K, Fukuda A, Hisatake K, Tomoda K, Asaka I, Toguchida J, Conklin BR, Yamanaka S (2016) BMP-SMAD-ID promotes reprogramming to pluripotency by inhibiting p16/INK4A-dependent senescence. Proc Natl Acad Sci U S A 113(46):13057–13062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K (2002) Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells 7(12):1191–1204

    Article  CAS  PubMed  Google Scholar 

  4. Watabe T, Miyazono K (2009) Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res 19(1):103–115

    Article  CAS  PubMed  Google Scholar 

  5. Wu MY, Hill CS (2009) Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev Cell 16(3):329–343

    Article  CAS  PubMed  Google Scholar 

  6. Wu M, Chen G, Li YP (2016) TGF-β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4:16009. https://doi.org/10.1038/boneres.2016.9

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kaplan FS, Xu M, Seemann P, Connor JM, Glaser DL, Carroll L, Delai P, Fastnacht-Urban E, Forman SJ, Gillessen-Kaesbach G, Hoover-Fong J, Koster B, Pauli RM, Reardon W, Zaidi S-A, Zasloff M, Morhart R, Mundlos S, Groppe J, Shore EM (2009) Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1. Hum Mutat 30(3):379–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shore EM, Xu MQ, Feldman GJ, Fenstermacher DA, Cho T-J, Choi IH, Connor JM, Delai P, Glaser DL, Le Merrer M, Morhart R, Rogers JG, Smith R, Triffitt JT, Urtizberea JA, Zasloff M, Brown MA, Kaplan FS (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38(5):525–527

    Article  CAS  PubMed  Google Scholar 

  9. Shore EM, Kaplan FS (2010) Inherited human diseases of heterotopic bone formation. Nat Rev Rheumatol 6(9):518–527. https://doi.org/10.1038/nrrheum.2010.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pignolo RJ, Foley KL (2005) Nonhereditary heterotopic ossification. Clin Rev Bone Miner Metab 3(3–4):261–266

    Article  Google Scholar 

  11. Edwards DS, Kuhn KM, Potter BK, Forsberg JA (2016) Heterotopic ossification: a review of current understanding, treatment, and future. J Orthop Trauma 30:S27–S30

    Article  PubMed  Google Scholar 

  12. Chakkalakal SA, Zhang DY, Culbert AL, Convente MR, Caron RJ, Wright AC, Maidment ADA, Kaplan FS, Shore EM (2012) An Acvr1 R206H knock-in mouse has fibrodysplasia ossificans progressiva. J Bone Miner Res 27(8):1746–1756. https://doi.org/10.1002/jbmr.1637

    Article  CAS  PubMed  Google Scholar 

  13. Chakkalakal SA, Uchibe K, Convente MR, Zhang DY, Economides AN, Kaplan FS, Pacifici M, Iwamoto M, Shore EM (2016) Palovarotene inhibits heterotopic ossification and maintains limb mobility and growth in mice with the human ACVR1(R206H) fibrodysplasia ossificans progressiva (FOP) mutation. J Bone Miner Res 31(9):1666–1675. https://doi.org/10.1002/jbmr.2820

    Article  CAS  PubMed  Google Scholar 

  14. Hatsell SJ, Idone V, Wolken DMA, Huang L, Kim HJ, Wang LL, Wen XL, Nannuru KC, Jimenez J, Xie LQ, Das N, Makhoul G, Chernomorsky R, D'Ambrosio D, Corpina RA, Schoenherr CJ, Feeley K, Yu PB, Yancopoulos GD, Murphy AJ, Economides AN (2015) ACVR1(R206H) receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci Transl Med 7(303). https://doi.org/10.1126/scitranslmed.aac4358

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lewandoski M (2001) Conditional control of gene expression in the mouse. Nat Rev Genet 2(10):743–755. https://doi.org/10.1038/35093537

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the International Fibrodysplasia Ossificans Progressiva Association (IFOPA), the Center for Research in FOP and Related Disorders, the Ian Cali Endowment for FOP Research, the Whitney Weldon Endowment for FOP Research, the Ashley Martucci FOP Research Fund, the Penn Center of Musculoskeletal Disorders (NIH P30-AR06919), the Cali-Weldon Professorship of FOP Research (EMS), and the National Institutes of Health (NIH R01-AR41916) for supporting our work. We also thank Regeneron Pharmaceuticals for developing the conditional Acvr1 R206H mouse model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen M. Shore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chakkalakal, S.A., Shore, E.M. (2019). Heterotopic Ossification in Mouse Models of Fibrodysplasia Ossificans Progressiva. In: Rogers, M. (eds) Bone Morphogenetic Proteins. Methods in Molecular Biology, vol 1891. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8904-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8904-1_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8903-4

  • Online ISBN: 978-1-4939-8904-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics