Skip to main content

Hydra as Model to Determine the Role of FOXO in Longevity

  • Protocol
  • First Online:
FOXO Transcription Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1890))

Abstract

In non-senescent Hydra, continuously high activity of transcription factor FOXO contributes to continuous stem cell proliferation. Here, we describe how genetic manipulation of Hydra polyps using embryo-microinjection allows uncovering the role of FOXO in coordinating both stem cell proliferation and antimicrobial peptide0073 , effector molecules of the innate immune system, and regulators of the microbiome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  Google Scholar 

  2. Dato S, Rose G, Crocco P, Monti D, Garagnani P, Franceschi C, Passarino G (2017) The genetics of human longevity: an intricacy of genes, environment, culture and microbiome. Mech Ageing Dev 165(Pt B):147–155

    Article  CAS  Google Scholar 

  3. Jones OR, Scheuerlein A, Salguero-Gómez R, Camarda CG, Schaible R, Casper BB, Dahlgren JP, Ehrlén J, García MB, Menges ES et al (2014) Diversity of ageing across the tree of life. Nature 505:169–173

    Article  CAS  Google Scholar 

  4. Bosch TCG (2009) Hydra and the evolution of stem cells. BioEssays 31:478–486

    Article  Google Scholar 

  5. Hemmrich G, Khalturin K, Boehm AM, Puchert M, Anton-Erxleben F, Wittlieb J, Klostermeier UC, Rosenstiel P, Oberg HH, Domazet-Lošo T et al (2012) Molecular signatures of the three stem cell lineages in hydra and the emergence of stem cell function at the base of multicellularity. Mol Biol Evol 29:3267–3280

    Article  CAS  Google Scholar 

  6. Boehm A-M, Khalturin K, Anton-Erxleben F, Hemmrich G, Klostermeier UC, Lopez-Quintero JA, Oberg H-H, Puchert M, Rosenstiel P, Wittlieb J et al (2012) FoxO is a critical regulator of stem cell maintenance in immortal Hydra. Proc Natl Acad Sci U S A 109:19697–19702

    Article  CAS  Google Scholar 

  7. Franzenburg S, Walter J, Künzel S, Wang J, Baines JF, Bosch TCG, Fraune S (2013) Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc Natl Acad Sci U S A 110:E3730–E3738

    Article  CAS  Google Scholar 

  8. Fraune S, Augustin R, Anton-Erxleben F, Wittlieb J, Gelhaus C, Klimovich VB, Samoilovich MP, Bosch TCG (2010) In an early branching metazoan, bacterial colonization of the embryo is controlled by maternal antimicrobial peptides. Proc Natl Acad Sci U S A 107:18067–18072

    Article  CAS  Google Scholar 

  9. Mortzfeld BM, Bosch TCG (2017) Eco-Aging: stem cells and microbes are controlled by aging antagonist FoxO. Curr Opin Microbiol 38:181–187

    Article  CAS  Google Scholar 

  10. Mortzfeld BM, Taubenheim J, Fraune S, Klimovich AV, Bosch TCG (2018) Stem cell transcription factor FoxO controls microbiome resilience in Hydra. Front Microbiol 9:629

    Article  Google Scholar 

  11. Lenhoff HM, Brown RD (1970) Mass culture of Hydra: an improved method and its application to other aquatic invertebrates. Lab Anim 4:139–154

    Article  CAS  Google Scholar 

  12. Wittlieb J, Khalturin K, Lohmann JU, Anton-Erxleben F, Bosch TCG (2006) Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc Natl Acad Sci U S A 103:6208–6211

    Article  CAS  Google Scholar 

  13. Franzenburg S, Walter J, Künzel S, Wang J, Baines JF, Bosch TCG et al (2013) Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc Natl Acad Sci 110:E3730–E3738

    Article  CAS  Google Scholar 

  14. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  15. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  Google Scholar 

  16. Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  Google Scholar 

  17. Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314

    Article  CAS  Google Scholar 

  18. David CN (1973) A quantitative method for maceration of hydra tissue. Dev Genes Evol 171:259–268

    Google Scholar 

  19. Krebs S, Fischaleck M, Blum H (2009) A simple and loss-free method to remove TRIzol contaminations from minute RNA samples. Anal Biochem 387:136–138

    Article  CAS  Google Scholar 

  20. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864

    Article  CAS  Google Scholar 

  21. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10

    Article  Google Scholar 

  22. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  Google Scholar 

  23. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  Google Scholar 

  24. Franzenburg S, Fraune S, Künzel S, Baines JF, Domazet-Lošo T, Bosch TCG (2012) MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers. Proc Natl Acad Sci 109:19374–19379

    Article  CAS  Google Scholar 

  25. Rausch P, Basic M, Batra A, Bischoff SC, Blaut M, Clavel T et al (2016) Analysis of factors contributing to variation in the C57BL/6J fecal microbiota across German animal facilities. Int J Med Microbiol 306:343–355

    Article  Google Scholar 

  26. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G et al (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504

    Article  CAS  Google Scholar 

  27. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL et al (2013) The long-term stability of the human gut microbiota. Science 341. https://doi.org/10.1126/science.1237439

  28. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS et al (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60

    Article  Google Scholar 

  29. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57:289–300

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) (CRC1182 “Origin and Function of Metaorganisms,” DFG grant BO 848/17-1, and grants from the DFG Cluster of Excellence program “Inflammation at Interfaces”). The author gratefully appreciates support from the Canadian Institute for Advanced Research (CIFAR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas C. G. Bosch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bosch, T.C.G. (2019). Hydra as Model to Determine the Role of FOXO in Longevity. In: Link, W. (eds) FOXO Transcription Factors. Methods in Molecular Biology, vol 1890. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8900-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8900-3_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8899-0

  • Online ISBN: 978-1-4939-8900-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics