Quantifying Tissue-Specific Overexpression of FOXO in Drosophila via mRNA Fluorescence In Situ Hybridization Using Branched DNA Probe Technology

  • Anna C. Blice-BaumEmail author
  • Georg VoglerEmail author
  • Meera C. Viswanathan
  • Bosco Trinh
  • Worawan B. Limpitikul
  • Anthony Cammarato
Part of the Methods in Molecular Biology book series (MIMB, volume 1890)


While the highly conserved FOXO transcription factors have been studied in Drosophila melanogaster for decades, the ability to accurately control and measure their tissue-specific expression is often cumbersome due to a lack of reagents and to limited, nonhomogeneous samples. The need for quantitation within a distinct cell type is particularly important because transcription factors must be expressed in specific amounts to perform their functions properly. However, the inherent heterogeneity of many samples can make evaluating cell-specific FOXO and/or FOXO load difficult. Here, we describe an extremely sensitive fluorescence in situ hybridization (FISH) approach for visualizing and quantifying multiple mRNAs with single-cell resolution in adult Drosophila cardiomyocytes. The procedure relies upon branched DNA technology, which allows several fluorescent molecules to label an individual transcript, drastically increasing the signal-to-noise ratio compared to other FISH assays. This protocol can be modified for use in various small animal models, tissue types, and for assorted nucleic acids.

Key words

Fluorescence in situ hybridization FISH Drosophila melanogaster Heart tube Dorsal vessel Branched DNA bDNA ViewRNA RNAscope 



We thank Holly Howarth for excellent technical assistance. This work was supported by R01HL124091 (to A.C.) and Cabrini University Academic Affairs funds (to A.C.B.). For questions, please contact A.C.B. ( or G.V. (


  1. 1.
    Weigel D, Jürgens G, Küttner F et al (1989) The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57:645–658. CrossRefGoogle Scholar
  2. 2.
    Tuteja G, Kaestner KH (2007) SnapShot: Forkhead transcription factors II. Cell 131(1):192CrossRefGoogle Scholar
  3. 3.
    Kaufmann E, Knöchel W (1996) Five years on the wings of fork head. Mech Dev 57:3–20CrossRefGoogle Scholar
  4. 4.
    Wang Y, Zhou Y, Graves DT (2014) FOXO transcription factors: their clinical significance and regulation. Biomed Res Int 2014:925350. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Xin Z, Ma Z, Jiang S et al (2017) FOXOs in the impaired heart: new therapeutic targets for cardiac diseases. Biochim Biophys Acta 1863:486–498CrossRefGoogle Scholar
  6. 6.
    Antikainen H, Driscoll M, Haspel G, Dobrowolski R (2017) TOR-mediated regulation of metabolism in aging. Aging Cell 16:1219–1233CrossRefGoogle Scholar
  7. 7.
    McLaughlin CN, Broihier HT (2017) Keeping neurons young and foxy: FoxOs promote neuronal plasticity. Trends Genet 34(1):65–78CrossRefGoogle Scholar
  8. 8.
    Hornsveld M, Dansen TB, Derksen PW, Burgering BMT (2017) Re-evaluating the role of FOXOs in cancer. Semin Cancer Biol 50:90–100CrossRefGoogle Scholar
  9. 9.
    Sun X, Chen WD, Wang YD (2017) DAF-16/FOXO transcription factor in aging and longevity. Front Pharmacol 8:548CrossRefGoogle Scholar
  10. 10.
    Lee SS, Kennedy S, Tolonen AC, Ruvkun G (2003) DAF-16 target genes that control C. elegans life-span and metabolism. Science 300:644–647. CrossRefGoogle Scholar
  11. 11.
    Proshkina EN, Shaposhnikov MV, Sadritdinova AF et al (2015) Basic mechanisms of longevity: a case study of Drosophila pro-longevity genes. Ageing Res Rev 24:218–231CrossRefGoogle Scholar
  12. 12.
    Jünger MA, Rintelen F, Stocker H et al (2003) The Drosophila Forkhead transcription factor FOXO mediates the reduction in cell number associated with reduced insulin signaling. J Biol 2:20. CrossRefGoogle Scholar
  13. 13.
    Ronnebaum SM, Patterson C (2010) The FoxO family in cardiac function and dysfunction. Annu Rev Physiol 72:81–94. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hu Y, Flockhart I, Vinayagam A et al (2011) An integrative approach to ortholog prediction for disease-focused and other functional studies. BMC Bioinformatics 12:357. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Salih DA, Brunet A (2008) FoxO transcription factors in the maintenance of cellular homeostasis during aging. Curr Opin Cell Biol 20:126–136CrossRefGoogle Scholar
  16. 16.
    Perrimon N, Bonini NM, Dhillon P (2016) Fruit flies on the front line: the translational impact of Drosophila. Dis Model Mech 9:229–231. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bilder D, Irvine KD (2017) Taking stock of the Drosophila research ecosystem. Genetics 206:1227–1236CrossRefGoogle Scholar
  18. 18.
    Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415. CrossRefPubMedGoogle Scholar
  19. 19.
    Murtaza G, Khan AK, Rashid R, Muneer S, Hasan SMFCJ (2017) FOXO transcriptional factors and long-term living. Oxidative Med Cell Longev 2017:3494289. CrossRefGoogle Scholar
  20. 20.
    Hannenhalli S, Kaestner KH (2009) The evolution of fox genes and their role in development and disease. Nat Rev Genet 10:233–240. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Takeuchi JK, Mileikovskaia M, Koshiba-Takeuchi K et al (2005) Tbx20 dose-dependently regulates transcription factor networks required for mouse heart and motoneuron development. Development 132:2463–2474. CrossRefPubMedGoogle Scholar
  22. 22.
    Calnan DR, Brunet A (2008) The FoxO code. Oncogene 27:2276–2288. CrossRefGoogle Scholar
  23. 23.
    Blice-Baum AC, Zambon AC, Kaushik G et al (2017) Modest overexpression of FOXO maintains cardiac proteostasis and ameliorates age-associated functional decline. Aging Cell 16:93–103. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Demontis F, Perrimon N (2010) FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging. Cell 143:813–825. CrossRefGoogle Scholar
  25. 25.
    Ferdous A, Battiprolu PK, Ni YG et al (2010) FoxO, autophagy, and cardiac remodeling. J Cardiovasc Transl Res 3:355–364CrossRefGoogle Scholar
  26. 26.
    Sengupta A, Molkentin JD, Yutzey KE (2009) FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem 284:28319–28331. CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Giambruno R, Grebien F, Stukalov A et al (2013) Affinity purification strategies for proteomic analysis of transcription factor complexes. J Proteome Res 12:4018–4027. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Banks CAS, Lee ZT, Boanca G et al (2014) Controlling for gene expression changes in transcription factor protein networks. Mol Cell Proteomics 13:1510–1522. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Taylor SC, Posch A (2014) The design of a quantitative western blot experiment. Biomed Res Int 2014:361590CrossRefGoogle Scholar
  30. 30.
    Lipman NS, Jackson LR, Weis-Garcia F, Trudel LJ (2005) Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR J 46:258–268. CrossRefPubMedGoogle Scholar
  31. 31.
    KÖHLER G, MILSTEIN C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497. CrossRefPubMedGoogle Scholar
  32. 32.
    Sarkar G, Sommer SS (1989) Access to a messenger RNA sequence or its protein products is not limited by tissue or species specificity. Science 244:331–334CrossRefGoogle Scholar
  33. 33.
    Murphy RM, Lamb GD (2013) Important considerations for protein analyses using antibody based techniques: down-sizing western blotting up-sizes outcomes. J Physiol 591:5823–5831. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pardue ML, Gall J (1969) Molecular hybridization of radioactive DNA to the DNA of cytological preparations. PNAS 64:600–604CrossRefGoogle Scholar
  35. 35.
    O’Connor C (2008) Fluorescence in situ hybridization (FISH). Nat Educ 1(1):171Google Scholar
  36. 36.
    Gall JG, Pardue ML (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations*. Proc Natl Acad Sci U S A 63:378–383. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Harrison PR, Conkie D, Paul J, Jones K (1973) Localisation of cellular globin messenger RNA by in situ hybridisation to complementary DNA. FEBS Lett 32:109–112. CrossRefPubMedGoogle Scholar
  38. 38.
    Titlow JS, Yang L, Parton RM et al (2018) Super-resolution single molecule FISH at the Drosophila neuromuscular junction. Methods Mol Biol 1649:163–175Google Scholar
  39. 39.
    Tautz D, Pfeifle C (1989) A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98:81–85. CrossRefGoogle Scholar
  40. 40.
    Battich N, Stoeger T, Pelkmans L (2013) Image-based transcriptomics in thousands of single human cells at single-molecule resolution. Nat Methods 10:1127–1136. CrossRefPubMedGoogle Scholar
  41. 41.
    Batish M, Raj A, Tyagi S (2011) Single molecule imaging of RNA in situ. Methods Mol Biol 714:3–13. CrossRefPubMedGoogle Scholar
  42. 42.
    Anderson R (2010) Multiplex fluorescence in situ hybridization (M-FISH). Methods Mol Biol 659:83–97CrossRefGoogle Scholar
  43. 43.
    Rudkin GT, Stollar BD (1977) High resolution detection of DNA-RNA hybrids insitu by indirect immunofluorescence. Nature 265:472–473CrossRefGoogle Scholar
  44. 44.
    Singer RH, Ward DC (1982) Actin gene expression visualized in chicken muscle tissue culture by using in situ hybridization with a biotinated nucleotide analog. Proc Natl Acad Sci U S A 79:7331–7335. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wang F, Flanagan J, Su N et al (2012) RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn 14:22–29. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lammers K, Abeln B, Hüsken M et al (2017) Formation and function of intracardiac valve cells in the Drosophila heart. J Exp Biol 220:jeb.156265. CrossRefGoogle Scholar
  47. 47.
    Cammarato A, Ahrens CH, Alayari NN et al (2011) A mighty small heart: the cardiac proteome of adult Drosophila melanogaster. PLoS One 6:e18497. CrossRefGoogle Scholar
  48. 48.
    Rugendorff A, Younossi-Hartenstein A, Hartenstein V (1994) Embryonic origin and differentiation of the Drosophila heart. Rouxs Arch Dev Biol 203:266–280.
  49. 49.
    Yin Z, Xu XL, Frasch M (1997) Regulation of the twist target gene tinman by modular cis-regulatory elements during early mesoderm development. Development 124:4971–4982PubMedGoogle Scholar
  50. 50.
    Wessells RJ, Fitzgerald E, Cypser JR et al (2004) Insulin regulation of heart function in aging fruit flies. Nat Genet 36:1275–1281. CrossRefPubMedGoogle Scholar
  51. 51.
    Vogler G, Ocorr K (2009) Visualizing the beating heart in Drosophila. J Vis Exp 31:6–8.
  52. 52.
    Alayari NN, Vogler G, Taghli-Lamallem O et al (2009) Fluorescent labeling of Drosophila heart structures. J Vis Exp:1–5.
  53. 53.
    Linkert M, Rueden CT, Allan C et al (2010) Metadata matters: access to image data in the real world. J Cell Biol 189:777–782CrossRefGoogle Scholar
  54. 54.
    Choi HMT, Calvert CR, Husain N et al (2016) Mapping a multiplexed zoo of mRNA expression. Development 143:3632–3637. CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Viswanathan MC, Blice-Baum AC, Sang T-K, Cammarato A (2016) Cardiac-restricted expression of VCP/TER94 RNAi or disease alleles perturbs Drosophila heart structure and impairs function. J Cardiovasc Dev Dis 3:1–20. CrossRefGoogle Scholar
  56. 56.
    Swatland HJ (1987) Autofluorescence of adipose tissue measured with fibre optics. Meat Sci 19:277–284. CrossRefPubMedGoogle Scholar
  57. 57.
    Masuda N, Ohnishi T, Kawamoto S et al (1999) Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples. Nucleic Acids Res 27:4436–4443. CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Evers LD, Fowler CB, Cunningham BR et al (2011) The effect of formaldehyde fixation on RNA: optimization of formaldehyde adduct removal. J Mol Diagn 13:282–288. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anna C. Blice-Baum
    • 1
    • 2
    Email author
  • Georg Vogler
    • 3
    Email author
  • Meera C. Viswanathan
    • 1
  • Bosco Trinh
    • 3
  • Worawan B. Limpitikul
    • 4
  • Anthony Cammarato
    • 1
    • 5
  1. 1.Division of Cardiology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Science Department, Iadarola Center for Science, Education and TechnologyCabrini UniversityRadnorUSA
  3. 3.Development, Aging and Regeneration ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaUSA
  4. 4.Department of Biomedical EngineeringJohns Hopkins University School of MedicineBaltimoreUSA
  5. 5.Department of PhysiologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations