Skip to main content
Book cover

Myogenesis pp 245–254Cite as

Fluorescence-Activated Cell Sorting of Larval Zebrafish Muscle Stem/Progenitor Cells Following Skeletal Muscle Injury

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1889))

Abstract

This chapter describes a protocol for the isolation of larval zebrafish muscle stem/progenitor cells by fluorescence-activated cell sorting (FACS). This method has been successfully applied to isolate pax3a expressing cells 3 days following needle stab skeletal muscle injury. The cell sorting strategy described here can easily be adapted to any cell type at embryonic or larval stages. RNA extracted from the sorted cells can be used for subsequent downstream applications such as quantitative PCR (qPCR), microarrays, or next generation sequencing.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9(2):493–495

    Article  CAS  Google Scholar 

  2. Cornelison D, Wold BJ (1997) Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev Biol 191(2):270–283

    Article  CAS  Google Scholar 

  3. Cooper R, Tajbakhsh S, Mouly V, Cossu G, Buckingham M, Butler-Browne G (1999) In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J Cell Sci 112(17):2895–2901

    CAS  Google Scholar 

  4. Charge SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84(1):209–238

    Article  CAS  Google Scholar 

  5. Seger C, Hargrave M, Wang X, Chai RJ, Elworthy S, Ingham PW (2011) Analysis of Pax7 expressing myogenic cells in zebrafish muscle development, injury, and models of disease. Dev Dyn 240(11):2440–2451

    Article  CAS  Google Scholar 

  6. Siegel AL, Gurevich DB, Currie PD (2013) A myogenic precursor cell that could contribute to regeneration in zebrafish and its similarity to the satellite cell. FEBS J 280(17):4074–4088

    Article  CAS  Google Scholar 

  7. Gurevich DB, Nguyen PD, Siegel AL, Ehrlich OV, Sonntag C, Phan JM, Berger S, Ratnayake D, Hersey L, Berger J (2016) Asymmetric division of clonal muscle stem cells coordinates muscle regeneration in vivo. Science 353(6295):aad9969

    Article  Google Scholar 

  8. Pipalia TG, Koth J, Roy SD, Hammond CL, Kawakami K, Hughes SM (2016) Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair. Dis Model Mech 9(6):671–684

    Article  CAS  Google Scholar 

  9. Chen Y-H, Wang Y-H, Chang M-Y, Lin C-Y, Weng C-W, Westerfield M, Tsai H-J (2007) Multiple upstream modules regulate zebrafish myf5 expression. BMC Dev Biol 7(1):1

    Article  CAS  Google Scholar 

  10. Cole NJ, Hall TE, Don EK, Berger S, Boisvert CA, Neyt C, Ericsson R, Joss J, Gurevich DB, Currie PD (2011) Development and evolution of the muscles of the pelvic fin. PLoS Biol 9(10):e1001168

    Article  CAS  Google Scholar 

  11. Berger J, Currie PD (2013) 503unc, a small and muscle-specific zebrafish promoter. Genesis 51(6):443–447

    Article  CAS  Google Scholar 

  12. Elworthy S, Hargrave M, Knight R, Mebus K, Ingham PW (2008) Expression of multiple slow myosin heavy chain genes reveals a diversity of zebrafish slow twitch muscle fibres with differing requirements for hedgehog and Prdm1 activity. Development 135(12):2115–2126

    Article  CAS  Google Scholar 

  13. Nord H, Burguiere A-C, Muck J, Nord C, Ahlgren U, von Hofsten J (2014) Differential regulation of myosin heavy chains defines new muscle domains in zebrafish. Mol Biol Cell 25(8):1384–1395

    Article  Google Scholar 

  14. van Impel A, Zhao Z, Hermkens DM, Roukens MG, Fischer JC, Peterson-Maduro J, Duckers H, Ober EA, Ingham PW, Schulte-Merker S (2014) Divergence of zebrafish and mouse lymphatic cell fate specification pathways. Development 141(6):1228–1238

    Article  Google Scholar 

  15. Elsalini OA, Rohr KB (2003) Phenylthiourea disrupts thyroid function in developing zebrafish. Dev Genes Evol 212(12):593–598

    CAS  PubMed  Google Scholar 

  16. Li Z, Ptak D, Zhang L, Walls EK, Zhong W, Leung YF (2012) Phenylthiourea specifically reduces zebrafish eye size. PLoS One 7(6):e40132

    Article  CAS  Google Scholar 

  17. Parker MO, Brock AJ, Millington ME, Brennan CH (2013) Behavioral phenotyping of casper mutant and 1-pheny-2-thiourea treated adult zebrafish. Zebrafish 10(4):466–471

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhanushika Ratnayake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ratnayake, D., Currie, P.D. (2019). Fluorescence-Activated Cell Sorting of Larval Zebrafish Muscle Stem/Progenitor Cells Following Skeletal Muscle Injury. In: Rønning, S. (eds) Myogenesis. Methods in Molecular Biology, vol 1889. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8897-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8897-6_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8896-9

  • Online ISBN: 978-1-4939-8897-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics