Advertisement

Single-Molecule Force Spectroscopy: Experiments, Analysis, and Simulations

  • Fidan Sumbul
  • Felix RicoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1886)

Abstract

The mechanical properties of cells and of subcellular components are important to obtain a mechanistic molecular understanding of biological processes. The quantification of mechanical resistance of cells and biomolecules using biophysical methods matured thanks to the development of nanotechnologies such as optical and magnetic tweezers, the biomembrane force probe, and atomic force microscopy (AFM). The quantitative nature of force spectroscopy measurements has converted AFM into a valuable tool in biophysics. Force spectroscopy allows the determination of the forces required to unfold protein domains and to disrupt individual receptor/ligand bonds. Molecular simulations as a computational microscope allow investigation of similar biological processes with an atomistic detail. In this chapter, we first provide a step-by-step protocol of force spectroscopy experiments using AFM, including sample preparation, measurements, and analysis and interpretation of the resulting dynamic force spectrum in terms of available theories. Next, we present the background for molecular dynamics (MD) simulations focusing on steered molecular dynamics (SMD) and the importance of bridging computational tools with experimental techniques.

Key words

Dynamic force spectroscopy Atomic force microscopy Steered molecular dynamics simulations Receptor–ligand interactions 

References

  1. 1.
    Egan P et al (2015) The role of mechanics in biological and bio-inspired systems. Nat Commun 6(May):7418–7418PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Boehr DD, Nussinov R (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5(11):789–796PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Kamm R, Lammerding J, Mofrad M (2010) Cellular nanomechanics. Springer, New York, NY, pp 1171–1200Google Scholar
  4. 4.
    Zhang X et al (2009) Atomic force microscopy of protein–protein interactions. Springer US, New York, pp 555–570Google Scholar
  5. 5.
    Wennmalm S, Simon SM (2007) Studying individual events in biology. Annu Rev Biochem 76:419–446PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Greenleaf WJ, Woodside MT, Block SM (2007) High-resolution, single-molecule measurements of biomolecular motion. Annu Rev Biophys Biomol Struct 36:171–190PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Binnig G, Quate C, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Barkai E, Jung Y, Silbey R (2004) Theory of single-molecule spectroscopy: beyond the ensemble average. Annu Rev Phys Chem 55(1):457–507PubMedCrossRefGoogle Scholar
  9. 9.
    Bustamante C, Macosko JC, Wuite GJ (2000) Grabbing the cat by the tail: manipulating molecules one by one. Nature reviews. Mol Cell Biol 1(2):130–136Google Scholar
  10. 10.
    Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6):491–505PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Eghiaian F et al (2014) High-speed atomic force microscopy: imaging and force spectroscopy. FEBS Lett 588(19):3631–3638PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Rico F et al (2013) High-speed force spectroscopy molecular dynamics simulations. Science 342:741–743PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Yu H et al (2017) Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins. Science 355(6328):945–950PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Oesterhelt F et al (2000) Unfolding pathways of individual bacteriorhodopsins. Science 288(5463):143–146PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science (New York, N.Y.) 264(5157):415–417CrossRefGoogle Scholar
  16. 16.
    Moy VT, Florin EL, Gaub HE (1994) Intermolecular forces and energies between ligands and receptors. Science 266(5183):257–259PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Rief M et al (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315):1109–1112PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Rief M et al (1997) Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275(5304):1295–1297PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Lee GU, Kidwell DA, Colton RJ (1994) Sensing discrete streptavidin-biotin interactions with atomic force microscopy. Langmuir 2(9):354–357CrossRefGoogle Scholar
  20. 20.
    Lee GU, Chrisey LA, Colton RJ (1994) Direct Measurement of the Forces Between Complementary Strands of DNA. Science 266(5186):771–773PubMedCrossRefGoogle Scholar
  21. 21.
    Lekka M et al (1999) Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy. Eur Biophys J 28(4):312–316PubMedCrossRefGoogle Scholar
  22. 22.
    Wu HW, Kuhn T, Moy VT (1998) Mechanical properties of l929 cells measured by atomic force microscopy: effects of anticytoskeletal drugs and membrane crosslinking. Scanning 20(5):389–397PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang X, Wojcikiewicz E, Moy VT (2002) Force spectroscopy of the leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction. Biophys J 83(4):2270–2279PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Benoit M et al (2000) Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol 2(6):313–317PubMedCrossRefGoogle Scholar
  25. 25.
    Rico F (2016) Molecular to cellular mechanics. Insights from atomic force microscopy. Aix-Marseille UniversitéGoogle Scholar
  26. 26.
    Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3(5):347–355CrossRefGoogle Scholar
  27. 27.
    Hinterdorfer P et al (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A 93(8):3477–3481PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Sulchek TA et al (2005) Dynamic force spectroscopy of parallel individual Mucin1-antibody bonds. Proc Natl Acad Sci U S A 102(46):16638–16643PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Ott W et al (2017) Single-molecule force spectroscopy on polyproteins and receptor-ligand complexes: the current toolbox. J Struct Biol 197(1):3–12PubMedCrossRefGoogle Scholar
  30. 30.
    Putman CAJ et al (1992) A detailed analysis of the optical beam deflection technique for use in atomic force microscopy. J Appl Phys 72(1):6–12CrossRefGoogle Scholar
  31. 31.
    Proksch R et al (2004) Finite optical spot size and position corrections in thermal spring constant calibration. Nanotechnology 15(9):1344–1350CrossRefGoogle Scholar
  32. 32.
    Hansma PK et al (1994) A new, optical-lever based atomic force microscope. J Appl Phys 76(2):796–799CrossRefGoogle Scholar
  33. 33.
    Ohler B (2007) Cantilever spring constant calibration using laser Doppler vibrometry. Rev Sci Instrum 78(6):063701PubMedCrossRefGoogle Scholar
  34. 34.
    Ohler B (2007) Practical advice on the determination of cantilever spring constants. Spring AN94:1–12Google Scholar
  35. 35.
    Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64(7):1868–1873CrossRefGoogle Scholar
  36. 36.
    Butt HJ, Jaschke M (1995) Calculation of thermal noise in atomic force microscopy. Nanotechnology 6:1–7CrossRefGoogle Scholar
  37. 37.
    Pirzer T, Hugel T (2009) Atomic force microscopy spring constant determination in viscous liquids. Rev Sci Instrum 80(3):035110–035116PubMedCrossRefGoogle Scholar
  38. 38.
    Higgins MJ et al (2006) Noninvasive determination of optical lever sensitivity in atomic force microscopy. Rev Sci Instrum 77(1):1–5CrossRefGoogle Scholar
  39. 39.
    Stark RW, Drobek T, Heckl WM (2001) Thermomechanical noise of a free v-shaped cantilever for atomic-force microscopy. Ultramicroscopy 86(1–2):207–215PubMedCrossRefGoogle Scholar
  40. 40.
    Sader JE, Chon JWM, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70(10):3967–3969CrossRefGoogle Scholar
  41. 41.
    Sader JE et al (2012) Spring constant calibration of atomic force microscope cantilevers of arbitrary shape. Rev Sci Instrum 83(10):103705PubMedCrossRefGoogle Scholar
  42. 42.
    Sader JE, Lu J, Mulvaney P (2014) Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope. Rev Sci Instrum 85(11):6–11Google Scholar
  43. 43.
    Sader JE et al (2016) A virtual instrument to standardise the calibration of atomic force microscope cantilevers. Rev Sci Instrum 87(9):093711PubMedCrossRefGoogle Scholar
  44. 44.
    Heim LO, Kappl M, Butt HJ (2004) Tilt of atomic force microscope cantilevers: effect on spring constant and adhesion measurements. Langmuir 20(7):2760–2764PubMedCrossRefGoogle Scholar
  45. 45.
    Hutter JL (2005) Comment on tilt of atomic force microscope cantilevers: effect on spring constant and adhesion measurements. Langmuir 21(6):2630–2632PubMedCrossRefGoogle Scholar
  46. 46.
    Rigato A et al (2017) High-frequency microrheology reveals cytoskeleton dynamics in living cells. Nat Phys 13:771PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Dudko OK, Hummer G, Szabo A (2006) Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys Rev Lett 96(10):108101PubMedCrossRefGoogle Scholar
  48. 48.
    Dudko OK, Hummer G, Szabo A (2008) Theory, analysis, and interpretation of single-molecule force spectroscopy experiments. Proc Natl Acad Sci U S A 105(41):15755–15760PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Sturm S, Bullerjahn JT, Kroy K (2014) Intramolecular relaxation in dynamic force spectroscopy. Eur Phys J Spec Top 223(14):3129–3144CrossRefGoogle Scholar
  50. 50.
    Friddle RW (2012) Theoretical models in force spectroscopy, Dynamic force spectroscopy and biomolecular recognition. CRC Press, Boca RatonCrossRefGoogle Scholar
  51. 51.
    Noy A, Friddle RW (2013) Practical single molecule force spectroscopy: how to determine fundamental thermodynamic parameters of intermolecular bonds with an atomic force microscope. Methods 60(2):142–150PubMedCrossRefGoogle Scholar
  52. 52.
    Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4):284–304CrossRefGoogle Scholar
  53. 53.
    Hanggi P, Talkner P, Borkovec M (1990) Reaction-rate theory—50 years after Kramers. Rev Mod Phys 62(2):251–341CrossRefGoogle Scholar
  54. 54.
    Merkel R et al (1999) Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397(January):50–53PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Friddle RW (2008) Unified model of dynamic forced barrier crossing in single molecules. Phys Rev Lett 100(13):138302PubMedCrossRefGoogle Scholar
  56. 56.
    Hummer G, Szabo A (2003) Kinetics from nonequilibrium single-molecule pulling experiments. Biophys J 85(1):5–15PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267(5612):585–590PubMedCrossRefGoogle Scholar
  58. 58.
    Pfaendtner J, Bonomi M (2015) Efficient sampling of high-dimensional free-energy landscapes with parallel bias metadynamics. J Chem Theory Comput 11(11):5062–5067PubMedCrossRefGoogle Scholar
  59. 59.
    Leach AR (2001) Molecular modelling: principles and applications, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  60. 60.
    Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159(1):98–103CrossRefGoogle Scholar
  61. 61.
    Hockney RW (1970) The potential calculation and some applications (Potential calculation from given source distribution, including direct and iterative methods, error analysis). Meth Comput Phys 9:136–211Google Scholar
  62. 62.
    Swope WC et al (1982) A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys 76(1):637–649CrossRefGoogle Scholar
  63. 63.
    Beeman D (1976) Some multistep methods for use in molecular dynamics calculations. J Comput Phys 20(2):130–139CrossRefGoogle Scholar
  64. 64.
    Karplus M, Petsko GA (1990) Molecular dynamics simulations in biology. Nature 347(6294):631–639PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Daggett V, Levitt M (1993) Realistic simulations of native-protein dynamics in solution and beyond. Annu Rev Biophys Biomol Struct 22:353–380PubMedCrossRefGoogle Scholar
  66. 66.
    Mackerell AD et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(97):3586–3616PubMedCrossRefGoogle Scholar
  67. 67.
    Sotomayor M, Schulten K (2007) Single-molecule experiments in vitro and in silico. Science (New York, N.Y.) 316(5828):1144–1148CrossRefGoogle Scholar
  68. 68.
    Adcock SA, McCammon JA (2006) Molecular dynamics: survey of methods for simulating the activity of proteins. Chem Rev 106(February):1589–1615PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Cornell WD et al (1996) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 118(9):2309–2309CrossRefGoogle Scholar
  70. 70.
    Oostenbrink C et al (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236CrossRefGoogle Scholar
  72. 72.
    Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem B 5647(98):7338–7364CrossRefGoogle Scholar
  73. 73.
    González MA (2011) Force fields and molecular dynamics simulations. Collect SFN 12:169–200CrossRefGoogle Scholar
  74. 74.
    Pearlman DA et al (1995) AMBER, a computer program for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to elucidate the structures and energies of molecules. Comput Phys Commun 91:1–41CrossRefGoogle Scholar
  75. 75.
    Brooks BR et al (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4(2):187–217CrossRefGoogle Scholar
  76. 76.
    Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1–3):43–56CrossRefGoogle Scholar
  77. 77.
    Lindahl E, Hess B, Van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306–317CrossRefGoogle Scholar
  78. 78.
    Phillips JC et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graph 14(1):33–38PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Ribeiro JV et al (2016) QwikMD—integrative molecular dynamics toolkit for novices and experts. Sci Rep 6(May):26536–26536PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11(2):224–230PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Grubmüller H (2005) Force probe molecular dynamics simulations. Methods Mol Biol (Clifton, N.J.) 305(1):493–515Google Scholar
  83. 83.
    Grater F et al (2005) Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations. Biophys J 88(2):790–804PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Rief M, Grubmuller H (2002) Force spectroscopy of single biomolecules. ChemPhysChem 3(3):255–261PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Grubmuller H, Heymann B, Tavan P (1996) Ligand binding: molecular mechanics calculation of the streptavidin biotin rupture force. Science 271(5251):997–999PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Lee EH et al (2009) Discovery through the computational microscope. Structure 17(10):1295–1306PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Lu H, Schulten K (2000) The key event in force-induced unfolding of Titin’s immunoglobulin domains. Biophys J 79(1):51–65PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Izrailev S et al (1997) Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J 72(4):1568–1581PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Franca EF, Amarante AM, Leite FL (2010) Introduction to atomic force microscopy simulation. In: Microscopy: science, technology, applications and education. Formatex, Spain, pp 1338–1349Google Scholar
  90. 90.
    Ludemann SK, Lounnas V, Wade RC (2000) How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J Mol Biol 303(5):797–811PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Kosztin D, Izrailev S, Schulten K (1999) Unbinding of retinoic acid from its receptor studied by steered molecular dynamics. Biophys J 76(1 Pt 1):188–197PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Izrailev S et al (1999) Steered molecular dynamics. Computational molecular dynamics: challenges, methods, ideas SE-2, vol 4. Springer, Berlin, pp 39–65CrossRefGoogle Scholar
  93. 93.
    Jarzynski C (1997) Nonequilibrium equality for free energy differences. Phys Rev Lett 78(14):2690–2693CrossRefGoogle Scholar
  94. 94.
    Jarzynski C (1997) Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys Rev E 56(5):5018–5035CrossRefGoogle Scholar
  95. 95.
    Gao M et al (2006) Molecular mechanisms of cellular mechanics. Phys Chem Chem Phys 8(32):3692–3706PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Hummer G, Szabo A (2001) Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc Natl Acad Sci U S A 98(7):3658–3661PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Balsera M et al (1997) Reconstructing potential energy functions from simulated force-induced unbinding processes. Biophys J 73(3):1281–1287PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Gullingsrud J, Braun R, Schulten K (1999) Reconstructing potentials of mean force through time series analysis of steered molecular dynamics simulations. J Comput Phys 151:190–211CrossRefGoogle Scholar
  99. 99.
    Park S et al (2003) Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality. J Chem Phys 119(6):3559–3566CrossRefGoogle Scholar
  100. 100.
    Sotomayor M (2015) Computational exploration of single-protein mechanics by steered molecular dynamics. AIP Conf Proc 1703:030001CrossRefGoogle Scholar
  101. 101.
    Zhmurov A et al (2010) SOP-GPU: accelerating biomolecular simulations in the centisecond timescale using graphics processors. Proteins Struct Funct Bioinf 78(14):2984–2999CrossRefGoogle Scholar
  102. 102.
    Kmiecik S et al (2014) Coarse-grained modeling of protein dynamics. Comput Methods Study Struct Dyn Biomol 1:55–79Google Scholar
  103. 103.
    Celik E, Moy VT (2012) Nonspecific interactions in AFM force spectroscopy measurements. J Mol Recognit 25(1):53–56PubMedCrossRefGoogle Scholar
  104. 104.
    Kuhn M et al (2005) Automated alignment and pattern recognition of single-molecule force spectroscopy data. J Microsc 218(2):125–132PubMedCrossRefGoogle Scholar
  105. 105.
    Puchner EM et al (2008) Comparing proteins by their unfolding pattern. Biophys J 109(50):426–434CrossRefGoogle Scholar
  106. 106.
    Fuhrmann A et al (2008) Refined procedure of evaluating experimental single-molecule force spectroscopy data. Phys Rev E Stat Nonlinear Soft Matter Phys 77(3):1–10CrossRefGoogle Scholar
  107. 107.
    Bosshart PD, Frederix PLTM, Engel A (2012) Reference-free alignment and sorting of single-molecule force spectroscopy data. Biophys J 102(9):2202–2211PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Jobst MA et al (2015) Resolving dual binding conformations of cellulosome cohesin-dockerin complexes using single-molecule force spectroscopy. eLife 4:e10319PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Alcaraz J et al (2002) Correction of microrheological measurements of soft samples with atomic force microscopy for the hydrodynamic drag on the cantilever. Langmuir 18(3):716–721CrossRefGoogle Scholar
  110. 110.
    Janovjak HJ, Struckmeier J, Muller DJ (2005) Hydrodynamic effects in fast AFM single-molecule force measurements. Eur Biophys J Biophys Lett 34(1):91–96CrossRefGoogle Scholar
  111. 111.
    Bustamante C et al (1994) Entropic elasticity of lambda-phage DNA. Science (New York, N.Y.) 265:1599–1600CrossRefGoogle Scholar
  112. 112.
    Ortiz C, Hadziioannou G (1999) Entropic elasticity of single polymer chains of poly(methacrylic acid) measured by atomic force microscopy. Macromolecules 32:780–787CrossRefGoogle Scholar
  113. 113.
    Livadaru L, Netz RR, Kreuzer HJ (2003) Stretching response of discrete semiflexible polymers. Macromolecules 36(10):3732–3744CrossRefGoogle Scholar
  114. 114.
    Bell G (1978) Models for the specific adhesion of cells to cells. Science 200(4342):618–627CrossRefGoogle Scholar
  115. 115.
    Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Evans E, Ritchie K (1999) Strength of a weak bond connecting flexible polymer chains. Biophys J 76(5):2439–2447PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Maitra A, Arya G (2010) Model accounting for the effects of pulling-device stiffness in the analyses of single-molecule force measurements. Phys Rev Lett 104(10):108301PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Friddle RW, Noy A, De Yoreo JJ (2012) Interpreting the widespread nonlinear force spectra of intermolecular bonds. Proc Natl Acad Sci 109(34):13573–13578PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Bullerjahn JT, Sturm S, Kroy K (2014) Theory of rapid force spectroscopy. Nat Commun 5:4463PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LAI, Aix-Marseille Université, INSERM UMR_S 1067, CNRS UMR 7333MarseilleFrance

Personalised recommendations