Investigating the Nanodomain Organization of Rhodopsin in Native Membranes by Atomic Force Microscopy

  • Subhadip Senapati
  • Paul S.-H. ParkEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1886)


Membrane proteins play an integral role in cellular communication. They are often organized within the crowded cell membrane into nanoscale domains (i.e., nanodomains), which facilitates their function in cell signaling processes. The visualization of membrane proteins and nanodomains within biological membranes under physiological conditions presents a challenge and is not possible using conventional microscopy methods. Atomic force microscopy (AFM) provides an opportunity to study the organization of membrane proteins within biological membranes with sub-nanometer resolution. An example of a membrane protein organized into nanodomains is rhodopsin. Rhodopsin is expressed in photoreceptor cells of the retina and upon photoactivation initiates a series of biochemical reactions called phototransduction, which represents the first steps of vision. AFM has provided an opportunity to directly visualize the packing of rhodopsin in native retinal membranes and the quantitative analysis of AFM images is beginning to reveal insights about the nanodomain organization of rhodopsin in the membrane. In this report, we outline procedures for imaging rhodopsin nanodomains by AFM and the quantitative analysis of those AFM images.

Key words

Atomic force microscopy Biological membrane Membrane nanodomains Membrane protein Membrane structure Photoreceptor cell Receptor oligomerization 



This work was funded by National Institutes of Health (R01EY021731) and Research to Prevent Blindness (Unrestricted Grant).


  1. 1.
    Fagerberg L, Jonasson K, von Heijne G et al (2010) Prediction of the human membrane proteome. Proteomics 10:1141–1149CrossRefGoogle Scholar
  2. 2.
    Drews J (2000) Drug discovery: a historical perspective. Science 287:1960–1964CrossRefGoogle Scholar
  3. 3.
    Yildirim MA, Goh KI, Cusick ME et al (2007) Drug-target network. Nat Biotechnol 25:1119–1126CrossRefGoogle Scholar
  4. 4.
    Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327:46–50CrossRefGoogle Scholar
  5. 5.
    Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572CrossRefGoogle Scholar
  6. 6.
    Jacobson K, Mouritsen OG, Anderson RG (2007) Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14CrossRefGoogle Scholar
  7. 7.
    Edidin M (2003) The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 32:257–283CrossRefGoogle Scholar
  8. 8.
    Pike LJ (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47:1597–1598CrossRefGoogle Scholar
  9. 9.
    Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11:688–699CrossRefGoogle Scholar
  10. 10.
    Muller DJ, Engel A (2007) Atomic force microscopy and spectroscopy of native membrane proteins. Nat Protoc 2:2191–2197CrossRefGoogle Scholar
  11. 11.
    Whited AM, Park PS (2014) Atomic force microscopy: a multifaceted tool to study membrane proteins and their interactions with ligands. Biochim Biophys Acta 1838:56–68CrossRefGoogle Scholar
  12. 12.
    Park PS (2014) Constitutively active rhodopsin and retinal disease. Adv Pharmacol 70:1–36CrossRefGoogle Scholar
  13. 13.
    Daemen FJ (1973) Vertebrate rod outer segment membranes. Biochim Biophys Acta 300:255–288CrossRefGoogle Scholar
  14. 14.
    Rakshit T, Park PS (2015) Impact of reduced rhodopsin expression on the structure of rod outer segment disc membranes. Biochemistry 54:2885–2894CrossRefGoogle Scholar
  15. 15.
    Papermaster DS, Dreyer WJ (1974) Rhodopsin content in the outer segment membranes of bovine and frog retinal rods. Biochemistry 13:2438–2444CrossRefGoogle Scholar
  16. 16.
    Fotiadis D, Liang Y, Filipek S et al (2003) Atomic-force microscopy: rhodopsin dimers in native disc membranes. Nature 421:127–128CrossRefGoogle Scholar
  17. 17.
    Whited AM, Park PS (2015) Nanodomain organization of rhodopsin in native human and murine rod outer segment disc membranes. Biochim Biophys Acta 1848:26–34CrossRefGoogle Scholar
  18. 18.
    Rakshit T, Senapati S, Sinha S et al (2015) Rhodopsin forms nanodomains in rod outer segment disc membranes of the cold-blooded Xenopus laevis. PLoS One 10:e0141114CrossRefGoogle Scholar
  19. 19.
    Buzhynskyy N, Salesse C, Scheuring S (2011) Rhodopsin is spatially heterogeneously distributed in rod outer segment disk membranes. J Mol Recognit 24:483–489CrossRefGoogle Scholar
  20. 20.
    Liang Y, Fotiadis D, Filipek S et al (2003) Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J Biol Chem 278:21655–21662CrossRefGoogle Scholar
  21. 21.
    Gunkel M, Schoneberg J, Alkhaldi W et al (2015) Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics. Structure 23:628–638CrossRefGoogle Scholar
  22. 22.
    Baylor DA, Lamb TD, Yau KW (1979) Responses of retinal rods to single photons. J Physiol 288:613–634PubMedPubMedCentralGoogle Scholar
  23. 23.
    Cangiano L, Dell'Orco D (2013) Detecting single photons: a supramolecular matter? FEBS Lett 587:1–4CrossRefGoogle Scholar
  24. 24.
    Dell'Orco D (2013) A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors. FEBS Lett 587:2060–2066CrossRefGoogle Scholar
  25. 25.
    Mishra AK, Gragg M, Stoneman MR et al (2016) Quaternary structures of opsin in live cells revealed by FRET spectrometry. Biochem J 473:3819–3836CrossRefGoogle Scholar
  26. 26.
    Sapra KT (2013) Atomic force microscopy and spectroscopy to probe single membrane proteins in lipid bilayers. Methods Mol Biol 974:73–110CrossRefGoogle Scholar
  27. 27.
    Sapra KT, Park PS, Filipek S et al (2006) Detecting molecular interactions that stabilize native bovine rhodopsin. J Mol Biol 358:255–269CrossRefGoogle Scholar
  28. 28.
    Fotiadis D, Liang Y, Filipek S et al (2004) The G protein-coupled receptor rhodopsin in the native membrane. FEBS Lett 564:281–288CrossRefGoogle Scholar
  29. 29.
    Park PS, Sapra KT, Jastrzebska B et al (2009) Modulation of molecular interactions and function by rhodopsin palmitylation. Biochemistry 48:4294–4304CrossRefGoogle Scholar
  30. 30.
    Molday RS, Hicks D, Molday L (1987) Peripherin. A rim-specific membrane protein of rod outer segment discs. Invest Ophthalmol Vis Sci 28:50–61PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Ophthalmology and Visual SciencesCase Western Reserve UniversityClevelandUSA

Personalised recommendations