Skip to main content

Imaging Artificial Membranes Using High-Speed Atomic Force Microscopy

Part of the Methods in Molecular Biology book series (MIMB,volume 1886)

Abstract

Supported lipid bilayers represent a very attractive way to mimic biological membranes, especially to investigate molecular mechanisms associated with the lateral segregation of membrane components. Observation of these model membranes with high-speed atomic force microscopy (HS-AFM) allows the capture of both topography and dynamics of membrane components, with a spatial resolution in the nanometer range and image capture time of less than 1 s. In this context, we have developed new protocols adapted for HS-AFM to form supported lipid bilayers on small mica disks using the vesicle fusion or Langmuir-Blodgett methods. In this chapter we describe in detail the protocols to fabricate supported artificial bilayers as well as the main guidelines for HS-AFM imaging of such samples.

Key words

  • Atomic force microscopy
  • Lipid
  • Artificial membrane
  • Supported lipid bilayer
  • Vesicle fusion
  • Langmuir
  • Dynamics

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-8894-5_3
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-8894-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kahya N (2006) Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy. Chem Phys Lipids 141:158–168

    CrossRef  CAS  Google Scholar 

  2. Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271:43–48

    CrossRef  CAS  Google Scholar 

  3. Muller DJ (2008) AFM: a nanotool in membrane biology. Biochemistry 47:7986–7998

    CrossRef  CAS  Google Scholar 

  4. El Kirat K, Morandat S, Dufrêne Y (2010) Nanoscale analysis of supported lipid bilayers using atomic force microscopy. Biochim Biophys Acta 1798:750–765

    CrossRef  CAS  Google Scholar 

  5. Garcia-Manyes S, Sanz F (2010) Nanomechanics of lipid bilayers by force spectroscopy with AFM: a perspective. Biochim Biophys Acta 1798:741–749

    Google Scholar 

  6. Goksu EI, Vanegas JM, Blanchette CD, Lin WC, Longo ML (2009) AFM for structure and dynamics of biomembranes. Biochim Biophys Acta 1788:254–266

    Google Scholar 

  7. Johnston I, Johnston LJ (2006) Ceramide promotes restructuring of model raft membranes. Langmuir 22:11284–11289

    CrossRef  CAS  Google Scholar 

  8. Seantier B, Giocondi M, Le Grimellec C, Milhiet P (2008) Probing supporting model and native membranes using afm. Curr Opin Colloid Interface Sci 13:326–337

    CrossRef  CAS  Google Scholar 

  9. Giocondi M-C, Seantier B, Dosset P, Milhiet P-E, Le Grimellec C (2008) Characterizing the interactions between GPI-anchored alkaline phosphatases and membrane domains by AFM. Pflüg Arch Eur J Physiol 456:179–188

    CrossRef  CAS  Google Scholar 

  10. Levy D, Milhiet P-E (2013) Imaging of transmembrane proteins directly incorporated within supported lipid bilayers using atomic force microscopy. Methods Mol Biol 950:343–357

    PubMed  CAS  Google Scholar 

  11. Czajkowsky DM, Hotze EM, Shao Z, Tweten RK (2004) Vertical collapse of a cytolysin prepore moves its transmembrane β-hairpins to the membrane. EMBO J 23:3206–3215

    CrossRef  CAS  Google Scholar 

  12. Yu C, Groves JT (2010) Engineering supported membranes for cell biology. Med Biol Eng Comput 48:955–963

    CrossRef  Google Scholar 

  13. Ando T, Uchihashi T, Scheuring S (2014) Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 114:3120–3188

    CrossRef  CAS  Google Scholar 

  14. Ando T, Uchihashi T, Kodera N, Yamamoto D, Miyagi A, Taniguchi M et al (2008) High-speed AFM and nano-visualization of biomolecular processes. Pflugers Arch 456:211–225

    CrossRef  CAS  Google Scholar 

  15. Giocondi MC, Yamamoto D, Lesniewska E, Milhiet PE, Ando T, Le Grimellec C (2010) Surface topography of membrane domains. Biochim Biophys Acta 1798:703–718

    Google Scholar 

  16. Yilmaz N, Kobayashi T (2015) Visualization of lipid membrane reorganization induced by a pore-forming toxin using high-speed atomic force microscopy. ACS Nano 9:7960–7967

    CrossRef  CAS  Google Scholar 

  17. Takahashi H, Miyagi A, Redondo-Morata L, Scheuring S (2016) Temperature-controlled high-speed AFM: real-time observation of ripple phase transitions. Small 12:6106–6113

    CrossRef  CAS  Google Scholar 

  18. McConnell HM, Watts TH, Weis RM, Brian AA (1986) Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim Biophys Acta 864:95–106

    CrossRef  CAS  Google Scholar 

  19. Almeida PF, Vaz WL, Thompson TE (1992) Lateral diffusion and percolation in two-phase, two-component lipid bilayers. Topology of the solid-phase domains in-plane and across the lipid bilayer. Biochemistry 31:7198–7210

    CrossRef  CAS  Google Scholar 

  20. Uchihashi T, Kodera N, Ando T (2012) Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat Protoc 7:1193–1206

    CrossRef  CAS  Google Scholar 

  21. Milhiet PE, Domec C, Giocondi MC, Van Mau N, Heitz F, Le Grimellec C (2001) Domain formation in models of the renal brush border membrane outer leaflet. Biophys J 81:547–555

    CrossRef  CAS  Google Scholar 

  22. Giocondi MC, Vié V, Lesniewska E, Milhiet PE, Zinke-Allmang M, Le Grimellec C (2001) Phase topology and growth of single domains in lipid bilayers. Langmuir 17:1653–1659

    CrossRef  CAS  Google Scholar 

  23. Needham D, McIntosh TJ, Evans E (1988) Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry 27:4668–4673

    CrossRef  CAS  Google Scholar 

  24. Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136

    CrossRef  CAS  Google Scholar 

  25. Nakanishi M, Hirayama E, Kim J (2001) Characterisation of myogenic cell membrane: II. Dynamic changes in membrane lipids during the differentiation of mouse C2 myoblast cells. Cell Biol Int 25:971–979

    CrossRef  CAS  Google Scholar 

  26. Yip CM, Elton EA, Darabie AA, Morrison MR, McLaurin J (2001) Cholesterol, a modulator of membrane-associated Abeta-fibrillogenesis and neurotoxicity. J Mol Biol 311:723–734

    CrossRef  CAS  Google Scholar 

  27. Chochina SV, Avdulov NA, Igbavboa U, Cleary JP, O’Hare EO, Wood WG (2001) Amyloid beta-peptide1-40 increases neuronal membrane fluidity: role of cholesterol and brain region. J Lipid Res 42:1292–1297

    PubMed  CAS  Google Scholar 

  28. Fritzsching KJ, Kim J, Holland GP (2013) Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and (13)C solid-state NMR. Biochim Biophys Acta 1828:1889–1898

    Google Scholar 

  29. Rangl M, Rima L, Klement J, Miyagi A, Keller S, Scheuring S (2017) Real-time visualization of phospholipid degradation by outer membrane phospholipase a using high-speed atomic force microscopy. J Mol Biol 429:977–986

    CrossRef  CAS  Google Scholar 

  30. Picas L, Carretero-Genevrier A, Montero MT, Vazquez-Ibar JL, Seantier B, Milhiet PE et al (2010) Preferential insertion of lactose permease in phospholipid domains: AFM observations. Biochim Biophys Acta 1798:1014–1019

    Google Scholar 

Download references

Acknowledgments

The research has been supported by CNRS (PEM and EL), INSERM (PEM), Institut Carnot (EL), and by the ANR program (ANR-11-nano-009-04, ANR-08-NANO-010-03, ANR- 08-PCVI-0003-02, the EpiGenMed Labex ANR-10-LABX-12-01 and the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INBS-05). We are grateful to our collaborators involved in the project, P. Dosset, J. Kokavecz, and C. Le Grimellec.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Emmanuel Milhiet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Verify currency and authenticity via CrossMark

Cite this protocol

Nasrallah, H. et al. (2019). Imaging Artificial Membranes Using High-Speed Atomic Force Microscopy. In: Santos, N., Carvalho, F. (eds) Atomic Force Microscopy. Methods in Molecular Biology, vol 1886. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8894-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8894-5_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8893-8

  • Online ISBN: 978-1-4939-8894-5

  • eBook Packages: Springer Protocols