Advertisement

Imaging Artificial Membranes Using High-Speed Atomic Force Microscopy

  • Hussein Nasrallah
  • Anthony Vial
  • Nicolas Pocholle
  • Jérémy Soulier
  • Luca Costa
  • Cédric Godefroy
  • Eric Bourillot
  • Eric Lesniewska
  • Pierre-Emmanuel MilhietEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1886)

Abstract

Supported lipid bilayers represent a very attractive way to mimic biological membranes, especially to investigate molecular mechanisms associated with the lateral segregation of membrane components. Observation of these model membranes with high-speed atomic force microscopy (HS-AFM) allows the capture of both topography and dynamics of membrane components, with a spatial resolution in the nanometer range and image capture time of less than 1 s. In this context, we have developed new protocols adapted for HS-AFM to form supported lipid bilayers on small mica disks using the vesicle fusion or Langmuir-Blodgett methods. In this chapter we describe in detail the protocols to fabricate supported artificial bilayers as well as the main guidelines for HS-AFM imaging of such samples.

Key words

Atomic force microscopy Lipid Artificial membrane Supported lipid bilayer Vesicle fusion Langmuir Dynamics 

Notes

Acknowledgments

The research has been supported by CNRS (PEM and EL), INSERM (PEM), Institut Carnot (EL), and by the ANR program (ANR-11-nano-009-04, ANR-08-NANO-010-03, ANR- 08-PCVI-0003-02, the EpiGenMed Labex ANR-10-LABX-12-01 and the French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INBS-05). We are grateful to our collaborators involved in the project, P. Dosset, J. Kokavecz, and C. Le Grimellec.

References

  1. 1.
    Kahya N (2006) Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy. Chem Phys Lipids 141:158–168CrossRefGoogle Scholar
  2. 2.
    Sackmann E (1996) Supported membranes: scientific and practical applications. Science 271:43–48CrossRefGoogle Scholar
  3. 3.
    Muller DJ (2008) AFM: a nanotool in membrane biology. Biochemistry 47:7986–7998CrossRefGoogle Scholar
  4. 4.
    El Kirat K, Morandat S, Dufrêne Y (2010) Nanoscale analysis of supported lipid bilayers using atomic force microscopy. Biochim Biophys Acta 1798:750–765CrossRefGoogle Scholar
  5. 5.
    Garcia-Manyes S, Sanz F (2010) Nanomechanics of lipid bilayers by force spectroscopy with AFM: a perspective. Biochim Biophys Acta 1798:741–749Google Scholar
  6. 6.
    Goksu EI, Vanegas JM, Blanchette CD, Lin WC, Longo ML (2009) AFM for structure and dynamics of biomembranes. Biochim Biophys Acta 1788:254–266Google Scholar
  7. 7.
    Johnston I, Johnston LJ (2006) Ceramide promotes restructuring of model raft membranes. Langmuir 22:11284–11289CrossRefGoogle Scholar
  8. 8.
    Seantier B, Giocondi M, Le Grimellec C, Milhiet P (2008) Probing supporting model and native membranes using afm. Curr Opin Colloid Interface Sci 13:326–337CrossRefGoogle Scholar
  9. 9.
    Giocondi M-C, Seantier B, Dosset P, Milhiet P-E, Le Grimellec C (2008) Characterizing the interactions between GPI-anchored alkaline phosphatases and membrane domains by AFM. Pflüg Arch Eur J Physiol 456:179–188CrossRefGoogle Scholar
  10. 10.
    Levy D, Milhiet P-E (2013) Imaging of transmembrane proteins directly incorporated within supported lipid bilayers using atomic force microscopy. Methods Mol Biol 950:343–357PubMedGoogle Scholar
  11. 11.
    Czajkowsky DM, Hotze EM, Shao Z, Tweten RK (2004) Vertical collapse of a cytolysin prepore moves its transmembrane β-hairpins to the membrane. EMBO J 23:3206–3215CrossRefGoogle Scholar
  12. 12.
    Yu C, Groves JT (2010) Engineering supported membranes for cell biology. Med Biol Eng Comput 48:955–963CrossRefGoogle Scholar
  13. 13.
    Ando T, Uchihashi T, Scheuring S (2014) Filming biomolecular processes by high-speed atomic force microscopy. Chem Rev 114:3120–3188CrossRefGoogle Scholar
  14. 14.
    Ando T, Uchihashi T, Kodera N, Yamamoto D, Miyagi A, Taniguchi M et al (2008) High-speed AFM and nano-visualization of biomolecular processes. Pflugers Arch 456:211–225CrossRefGoogle Scholar
  15. 15.
    Giocondi MC, Yamamoto D, Lesniewska E, Milhiet PE, Ando T, Le Grimellec C (2010) Surface topography of membrane domains. Biochim Biophys Acta 1798:703–718Google Scholar
  16. 16.
    Yilmaz N, Kobayashi T (2015) Visualization of lipid membrane reorganization induced by a pore-forming toxin using high-speed atomic force microscopy. ACS Nano 9:7960–7967CrossRefGoogle Scholar
  17. 17.
    Takahashi H, Miyagi A, Redondo-Morata L, Scheuring S (2016) Temperature-controlled high-speed AFM: real-time observation of ripple phase transitions. Small 12:6106–6113CrossRefGoogle Scholar
  18. 18.
    McConnell HM, Watts TH, Weis RM, Brian AA (1986) Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim Biophys Acta 864:95–106CrossRefGoogle Scholar
  19. 19.
    Almeida PF, Vaz WL, Thompson TE (1992) Lateral diffusion and percolation in two-phase, two-component lipid bilayers. Topology of the solid-phase domains in-plane and across the lipid bilayer. Biochemistry 31:7198–7210CrossRefGoogle Scholar
  20. 20.
    Uchihashi T, Kodera N, Ando T (2012) Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nat Protoc 7:1193–1206CrossRefGoogle Scholar
  21. 21.
    Milhiet PE, Domec C, Giocondi MC, Van Mau N, Heitz F, Le Grimellec C (2001) Domain formation in models of the renal brush border membrane outer leaflet. Biophys J 81:547–555CrossRefGoogle Scholar
  22. 22.
    Giocondi MC, Vié V, Lesniewska E, Milhiet PE, Zinke-Allmang M, Le Grimellec C (2001) Phase topology and growth of single domains in lipid bilayers. Langmuir 17:1653–1659CrossRefGoogle Scholar
  23. 23.
    Needham D, McIntosh TJ, Evans E (1988) Thermomechanical and transition properties of dimyristoylphosphatidylcholine/cholesterol bilayers. Biochemistry 27:4668–4673CrossRefGoogle Scholar
  24. 24.
    Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136CrossRefGoogle Scholar
  25. 25.
    Nakanishi M, Hirayama E, Kim J (2001) Characterisation of myogenic cell membrane: II. Dynamic changes in membrane lipids during the differentiation of mouse C2 myoblast cells. Cell Biol Int 25:971–979CrossRefGoogle Scholar
  26. 26.
    Yip CM, Elton EA, Darabie AA, Morrison MR, McLaurin J (2001) Cholesterol, a modulator of membrane-associated Abeta-fibrillogenesis and neurotoxicity. J Mol Biol 311:723–734CrossRefGoogle Scholar
  27. 27.
    Chochina SV, Avdulov NA, Igbavboa U, Cleary JP, O’Hare EO, Wood WG (2001) Amyloid beta-peptide1-40 increases neuronal membrane fluidity: role of cholesterol and brain region. J Lipid Res 42:1292–1297PubMedGoogle Scholar
  28. 28.
    Fritzsching KJ, Kim J, Holland GP (2013) Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and (13)C solid-state NMR. Biochim Biophys Acta 1828:1889–1898Google Scholar
  29. 29.
    Rangl M, Rima L, Klement J, Miyagi A, Keller S, Scheuring S (2017) Real-time visualization of phospholipid degradation by outer membrane phospholipase a using high-speed atomic force microscopy. J Mol Biol 429:977–986CrossRefGoogle Scholar
  30. 30.
    Picas L, Carretero-Genevrier A, Montero MT, Vazquez-Ibar JL, Seantier B, Milhiet PE et al (2010) Preferential insertion of lactose permease in phospholipid domains: AFM observations. Biochim Biophys Acta 1798:1014–1019Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hussein Nasrallah
    • 1
    • 2
  • Anthony Vial
    • 1
    • 2
  • Nicolas Pocholle
    • 3
  • Jérémy Soulier
    • 1
    • 2
  • Luca Costa
    • 1
    • 2
  • Cédric Godefroy
    • 1
    • 2
  • Eric Bourillot
    • 3
  • Eric Lesniewska
    • 3
  • Pierre-Emmanuel Milhiet
    • 1
    • 2
    Email author
  1. 1.INSERM, U1054MontpellierFrance
  2. 2.Centre de Biochimie StructuraleUniversité de Montpellier, CNRS, UMR 5048MontpellierFrance
  3. 3.ICB UMR CNRS 6303University of Bourgogne Franche-ComteDijonFrance

Personalised recommendations