Advertisement

AFM Nanoindentation Experiments on Protein Shells: A Protocol

  • Yukun Guo
  • Wouter H. RoosEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1886)

Abstract

Proteinaceous assemblies are ubiquitous in nature. One important form of these assemblies are protein nanoshells such as viruses; however, a variety of other protein shells exist. To deepen our knowledge on the structure and function of protein shells, a profound insight into their mechanical properties is required. Nanoindentation measurements with an atomic force microscope (AFM) are increasingly being performed to probe such material properties. This single particle approach allows us to determine the spring constant, the Young’s modulus, as well as the force and deformation at which failure occurs of the nanoshells. The experimental procedures for these mechanical measurements are described here in detail, focusing on surface preparation, AFM imaging and nanoindentation, and the subsequent data analysis of the force–distance curves. Whereas AFM can be operated in air and in liquid, the described methods are for probing single particles in liquid to enable studies in close to physiological environments.

Key words

Protein shell Virus Bacteriophage Capsid Atomic force microscopy Nanoindentation Force spectroscopy Mechanical properties Materials science Biophysics 

Notes

Justification and Acknowledgments

A first version of this chapter was published in Methods in Molecular Biology Vol. 783 pp 251–264. The current version is an overhaul and extended version of the previous protocol. This work is supported by a Nederlandse Organisatie der Wetenschappen Vidi vernieuwingsimpuls grant (to WHR).

References

  1. 1.
    Sutter M et al (2008) Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol 15(9):939–947CrossRefGoogle Scholar
  2. 2.
    Knipe DM, Howley PM (eds) (2013) Fields virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, PAGoogle Scholar
  3. 3.
    Querol-Audí J et al (2009) The mechanism of vault opening from the high resolution structure of the N-terminal repeats of MVP. EMBO J 28(21):3450–3457CrossRefGoogle Scholar
  4. 4.
    Kerfeld CA, Melnicki MR (2016) Assembly, function and evolution of cyanobacterial carboxysomes. Curr Opin Plant Biol 31:66–75CrossRefGoogle Scholar
  5. 5.
    Kol N et al (2007) A stiffness switch in human immunodeficiency virus. Biophys J 92(5):1777–1783CrossRefGoogle Scholar
  6. 6.
    Snijder J et al (2013) Probing the biophysical interplay between a viral genome and its capsid. Nat Chem 5(6):502–509CrossRefGoogle Scholar
  7. 7.
    Ivanovska IL et al (2004) Bacteriophage capsids: tough nanoshells with complex elastic properties. Proc Natl Acad Sci U S A 101(20):7600–7605CrossRefGoogle Scholar
  8. 8.
    Roos WH et al (2012) Mechanics of bacteriophage maturation. Proc Natl Acad Sci U S A 109(7):2342–2347CrossRefGoogle Scholar
  9. 9.
    Hernando-Pérez M et al (2014) Cementing proteins provide extra mechanical stabilization to viral cages. Nat Commun 5:4520CrossRefGoogle Scholar
  10. 10.
    Snijder J et al (2012) Probing the impact of loading rate on the mechanical properties of viral nanoparticles. Micron 43(12):1343–1350CrossRefGoogle Scholar
  11. 11.
    Vaughan R et al (2014) The tripartite virions of the brome mosaic virus have distinct physical properties that affect the timing of the infection process. J Virol 88(11):6483–6491CrossRefGoogle Scholar
  12. 12.
    Baclayon M et al (2011) Prestress strengthens the shell of Norwalk virus nanoparticles. Nano Lett 11(11):4865–4869CrossRefGoogle Scholar
  13. 13.
    Li S et al (2014) pH-controlled two-step uncoating of influenza virus. Biophys J 106(7):1447–1456CrossRefGoogle Scholar
  14. 14.
    Snijder J et al (2013) Integrin and defensin modulate the mechanical properties of adenovirus. J Virol 87:2756–2766CrossRefGoogle Scholar
  15. 15.
    Ortega-Esteban A et al (2015) Mechanics of viral chromatin reveals the pressurization of human adenovirus. ACS Nano 9(11):10826–10833CrossRefGoogle Scholar
  16. 16.
    Roos WH, Bruinsma R, Wuite GJL (2010) Physical virology. Nat Phys 6(10):733–743CrossRefGoogle Scholar
  17. 17.
    Mateu MG (2013) Assembly, stability and dynamics of virus capsids. Arch Biochem Biophys 531(1–2):65–79CrossRefGoogle Scholar
  18. 18.
    Marchetti M, Wuite GJL, Roos WH (2016) Atomic force microscopy observation and characterization of single virions and virus-like particles by nano-indentation. Curr Opin Virol 18:82–88CrossRefGoogle Scholar
  19. 19.
    Snijder J et al (2016) Assembly and mechanical properties of the cargo-free and cargo-loaded bacterial nanocompartment encapsulin. Biomacromolecules 17(8):2522–2529CrossRefGoogle Scholar
  20. 20.
    Llauro A et al (2014) Mechanical stability and reversible fracture of vault particles. Biophys J 106(3):687–695CrossRefGoogle Scholar
  21. 21.
    Heinze K et al (2016) Protein nanocontainers from nonviral origin: testing the mechanics of artificial and natural protein cages by AFM. J Phys Chem B 120(26):5945–5952CrossRefGoogle Scholar
  22. 22.
    Hansma PK et al (1994) Tapping mode atomic-force microscopy in liquids. Appl Phys Lett 64(13):1738–1740CrossRefGoogle Scholar
  23. 23.
    Putman CAJ et al (1994) Tapping mode atomic-force microscopy in liquid. Appl Phys Lett 64(18):2454–2456CrossRefGoogle Scholar
  24. 24.
    de Pablo PJ et al (1998) Jumping mode scanning force microscopy. Appl Phys Lett 73(22):3300–3302CrossRefGoogle Scholar
  25. 25.
    Michel JP et al (2006) Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength. Proc Natl Acad Sci U S A 103(16):6184–6189CrossRefGoogle Scholar
  26. 26.
    Carrasco C et al (2006) DNA-mediated anisotropic mechanical reinforcement of a virus. Proc Natl Acad Sci U S A 103(37):13706–13711CrossRefGoogle Scholar
  27. 27.
    Ivanovska I et al (2007) Internal DNA pressure modifies stability of WT phage. Proc Natl Acad Sci U S A 104(23):9603–9608CrossRefGoogle Scholar
  28. 28.
    Uetrecht C et al (2008) High-resolution mass spectrometry of viral assemblies: molecular composition and stability of dimorphic hepatitis B virus capsids. Proc Natl Acad Sci U S A 105:9216–9220CrossRefGoogle Scholar
  29. 29.
    Carrasco C et al (2008) Manipulation of the mechanical properties of a virus by protein engineering. Proc Natl Acad Sci U S A 105(11):4150–4155CrossRefGoogle Scholar
  30. 30.
    Roos WH et al (2009) Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids. Proc Natl Acad Sci U S A 106:9673–9678CrossRefGoogle Scholar
  31. 31.
    Arkhipov A et al (2009) Elucidating the mechanism behind irreversible deformation of viral capsids. Biophys J 97(7):2061–2069CrossRefGoogle Scholar
  32. 32.
    Sader JE, Chon JWM, Mulvaney P (1999) Calibration of rectangular atomic force microscope cantilevers. Rev Sci Instrum 70(10):3967–3969CrossRefGoogle Scholar
  33. 33.
    Gibbons MM, Klug WS (2007) Nonlinear finite-element analysis of nanoindentation of viral capsids. Phys Rev E 75(3):031901CrossRefGoogle Scholar
  34. 34.
    Gibbons MM, Klug WS (2008) Influence of nonuniform geometry on nanoindentation of viral capsids. Biophys J 95(8):3640–3649CrossRefGoogle Scholar
  35. 35.
    Landau LD, Lifshitz EM (1986) Theory of elasticity, 3rd edn. Elsevier, OxfordGoogle Scholar
  36. 36.
    Roos WH, Wuite GJL (2009) Nanoindentation studies reveal material properties of viruses. Adv Mater 21:1187–1192CrossRefGoogle Scholar
  37. 37.
    Baclayon M, Wuite GJL, Roos WH (2010) Imaging and manipulation of single viruses by atomic force microscopy. Soft Matter 6(21):5273–5285CrossRefGoogle Scholar
  38. 38.
    Kol N et al (2006) Mechanical properties of murine leukemia virus particles: effect of maturation. Biophys J 91(2):767–774CrossRefGoogle Scholar
  39. 39.
    Klug WS et al (2006) Failure of viral shells. Phys Rev Lett 97(22):228101CrossRefGoogle Scholar
  40. 40.
    Llauró A et al (2015) Calcium ions modulate the mechanics of tomato bushy stunt virus. Biophys J 109(2):390–397CrossRefGoogle Scholar
  41. 41.
    Liashkovich I et al (2008) Exceptional mechanical and structural stability of HSV-1 unveiled with fluid atomic force microscopy. J Cell Sci 121(Pt 14):2287–2292CrossRefGoogle Scholar
  42. 42.
    Kienberger F et al (2004) Monitoring RNA release from human rhinovirus by dynamic force microscopy. J Virol 78(7):3203–3209CrossRefGoogle Scholar
  43. 43.
    Xu X et al (2008) Unmasking imaging forces on soft biological samples in liquids when using dynamic atomic force microscopy: a case study on viral capsids. Biophys J 95(5):2520–2528CrossRefGoogle Scholar
  44. 44.
    Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59(1–6):1–152CrossRefGoogle Scholar
  45. 45.
    Gibbons MM, Klug WS (2007) Mechanical modeling of viral capsids. J Mater Sci 42(21):8995–9004CrossRefGoogle Scholar
  46. 46.
    Cieplak M, Robbins MO (2013) Nanoindentation of 35 virus capsids in a molecular model: relating mechanical properties to structure. PLoS One 8(6):e63640CrossRefGoogle Scholar
  47. 47.
    Polles G et al (2013) Mechanical and assembly units of viral capsids identified via quasi-rigid domain decomposition. PLoS Comput Biol 9(11):e1003331CrossRefGoogle Scholar
  48. 48.
    Roos WH (2011) How to perform a nanoindentation experiment on a virus. Methods Mol Biol 783:251–264CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit GroningenGroningenThe Netherlands

Personalised recommendations