Advertisement

Antimicrobial Peptides: Effect on Bacterial Cells

  • Marco M. DominguesEmail author
  • Mário R. Felício
  • Sónia GonçalvesEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1886)

Abstract

Antimicrobial peptides (AMPs) are one of the most promising alternatives to conventional antibiotics. Atomic force microscopy (AFM), as imaging and force spectroscopy tool, has been applied to study their mechanism of action and development. Here, we describe different methods to be applied in the study of AMP effects on bacteria, either by imaging or by force spectroscopy studies, essential to underlie their action and to identify possibly outcomes of the same.

Key words

Antimicrobial peptides Atomic force microscopy Gram-negative bacteria Gram-positive bacteria Imaging Force spectroscopy 

Notes

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia – Ministério da Ciência, Tecnologia e Ensino Superior (FCT-MCTES, Portugal), including FCT-MCTES fellowships SFRH/BPD/122779/2016 and SPRH/BD/100517/2014 to MMD and MRF, respectively.

References

  1. 1.
    Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323CrossRefGoogle Scholar
  2. 2.
    Fjell CD, Hiss JA, REW H, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 2:31–45.  https://doi.org/10.1038/nrd3653CrossRefGoogle Scholar
  3. 3.
    Ramesh S, Govender T, Kruger HG et al (2016) Short AntiMicrobial Peptides (SAMPs) as a class of extraordinary promising therapeutic agents. J Pept Sci 22:438–451.  https://doi.org/10.1002/psc.2894CrossRefPubMedGoogle Scholar
  4. 4.
    Jenssen H, Hamill P, Hancock REW (2006) Peptide antimicrobial agents. Clin Microbiol Rev 19:491–511.  https://doi.org/10.1128/CMR.00056-05CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Maturana P, Martinez M, Noguera ME et al (2017) Lipid selectivity in novel antimicrobial peptides: implication on antimicrobial and hemolytic activity. Colloids Surf B Biointerfaces 153:152–159.  https://doi.org/10.1016/j.colsurfb.2017.02.003CrossRefPubMedGoogle Scholar
  6. 6.
    Silva PM, Gonçalves S, Santos NC (2014) Defensins: antifungal lessons from eukaryotes. Front Microbiol 5:1–17.  https://doi.org/10.3389/fmicb.2014.00097CrossRefGoogle Scholar
  7. 7.
    Gomes B, Augusto MT, Felício MR et al (2018) Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol Adv 36:415–429.  https://doi.org/10.1016/j.biotechadv.2018.01.004CrossRefPubMedGoogle Scholar
  8. 8.
    Ribeiro SM, Felício MR, Boas EV et al (2016) New frontiers for anti-biofilm drug development. Pharmacol Ther 160:133–144.  https://doi.org/10.1016/j.pharmthera.2016.02.006CrossRefPubMedGoogle Scholar
  9. 9.
    Cardoso MH, Ribeiro SM, Nolasco DO et al (2016) A polyalanine peptide derived from polar fish with anti-infectious activities. Sci Rep 6:21385.  https://doi.org/10.1038/srep21385CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Migliolo L, Silva ON, Silva PA et al (2012) Structural and functional characterization of a multifunctional alanine-rich peptide analogue from Pleuronectes americanus. PLoS One 7:e47047.  https://doi.org/10.1371/journal.pone.0047047CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Felício MR, Silva ON, Gonçalves S et al (2017) Peptides with dual antimicrobial and anticancer activities. Front Chem 5:5.  https://doi.org/10.3389/fchem.2017.00005CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gonçalves S, Silva PM, Felício MR et al (2017) Psd1 effects on Candida albicans planktonic cells and biofilms. Front Cell Infect Microbiol 7:249.  https://doi.org/10.3389/fcimb.2017.00249CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Vigant F, Santos NC, Lee B (2015) Broad-spectrum antivirals against viral fusion. Nat Rev Microbiol 13:426–437.  https://doi.org/10.1038/nrmicro3475CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Hancock REW, Haney EF, Gill EE (2016) The immunology of host defence peptides: beyond antimicrobial activity. Nat Rev Immunol 16:321–334.  https://doi.org/10.1038/nri.2016.29CrossRefPubMedGoogle Scholar
  15. 15.
    Gill EE, Franco OL, Hancock REW (2015) Antibiotic adjuvants: diverse strategies for controlling drug-resistant pathogens. Chem Biol Drug Des 85:56–78.  https://doi.org/10.1111/cbdd.12478CrossRefPubMedGoogle Scholar
  16. 16.
    Warschawski DE, Arnold AA, Beaugrand M et al (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta Biomembr 1808:1957–1974.  https://doi.org/10.1016/j.bbamem.2011.03.016CrossRefGoogle Scholar
  17. 17.
    Renner LD, Weibel DB (2011) Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. Proc Natl Acad Sci 108:6264–6269.  https://doi.org/10.1073/pnas.1015757108CrossRefPubMedGoogle Scholar
  18. 18.
    Mularski A, Wilksch JJ, Hanssen E et al (2016) Atomic force microscopy of bacteria reveals the mechanobiology of pore forming peptide action. Biochim Biophys Acta Biomembr 1858:1091–1098.  https://doi.org/10.1016/j.bbamem.2016.03.002CrossRefGoogle Scholar
  19. 19.
    Mularski A, Wilksch JJ, Wang H et al (2015) Atomic force microscopy reveals the mechanobiology of lytic peptide action on bacteria. Langmuir 31:6164–6171.  https://doi.org/10.1021/acs.langmuir.5b01011CrossRefPubMedGoogle Scholar
  20. 20.
    Domingues MM, Silva PM, Franquelim HG et al (2014) Antimicrobial protein rBPI21-induced surface changes on Gram-negative and Gram-positive bacteria. Nanomed Nanotechnol Biol Med 10:543–551.  https://doi.org/10.1016/j.nano.2013.11.002CrossRefGoogle Scholar
  21. 21.
    Sun S, Zhao G, Huang Y et al (2016) Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy. Sci Rep 6:29145.  https://doi.org/10.1038/srep29145CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Quilès F, Saadi S, Francius G et al (2016) In situ and real time investigation of the evolution of a Pseudomonas fluorescens nascent biofilm in the presence of an antimicrobial peptide. Biochim Biophys Acta Biomembr 1858:75–84.  https://doi.org/10.1016/j.bbamem.2015.10.015CrossRefGoogle Scholar
  23. 23.
    Domingues MM, Castanho MARB, Santos NC (2009) rBPI21 promotes lipopolysaccharide aggregation and exerts its antimicrobial effects by (hemi)fusion of PG-containing membranes. PLoS One 4:e8385.  https://doi.org/10.1371/journal.pone.0008385CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Domingues M, Santos N, Castanho M (2012) Antimicrobial peptide rBPI21: a translational overview from bench to clinical studies. Curr Protein Pept Sci 13:611–619.  https://doi.org/10.2174/138920312804142101CrossRefPubMedGoogle Scholar
  25. 25.
    Müller DJ, Helenius J, Alsteens D, Dufrêne YF (2009) Force probing surfaces of living cells to molecular resolution. Nat Chem Biol 5:383–390.  https://doi.org/10.1038/nchembio.181CrossRefPubMedGoogle Scholar
  26. 26.
    Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868.  https://doi.org/10.1063/1.1143970CrossRefGoogle Scholar
  27. 27.
    Wang C, Zolotarskaya OY, Nair SS et al (2016) Real-time observation of antimicrobial polycation effects on Escherichia coli: adapting the carpet model for membrane disruption to quaternary copolyoxetanes. Langmuir 32:2975–2984.  https://doi.org/10.1021/acs.langmuir.5b04247CrossRefPubMedGoogle Scholar
  28. 28.
    Cerf A, Cau J-C, Vieu C, Dague E (2009) Nanomechanical properties of dead or alive single-patterned bacteria. Langmuir 25:5731–5736.  https://doi.org/10.1021/la9004642CrossRefPubMedGoogle Scholar
  29. 29.
    Barattin R, Voyer N (2008) Chemical modifications of AFM tips for the study of molecular recognition events. Chem Commun (Camb):1513–1532.  https://doi.org/10.1039/b614328h
  30. 30.
    Frisbie CD, Rozsnyai LF, Noy A et al (1994) Functional group imaging by chemical force microscopy. Science 265:2071–2074.  https://doi.org/10.1126/science.265.5181.2071CrossRefPubMedGoogle Scholar
  31. 31.
    Blanchette CD, Loui A, Ratto TV (2008) Tip functionalization: applications to chemical force spectroscopy. In: Handbook of Molecular Force Spectroscopy. Springer, Boston, MA, pp 185–203CrossRefGoogle Scholar
  32. 32.
    Dufrêne YF (2008) Atomic force microscopy and chemical force microscopy of microbial cells. Nat Protoc 3:1132–1138.  https://doi.org/10.1038/nprot.2008.101CrossRefPubMedGoogle Scholar
  33. 33.
    Kasas S, Ikai A (1995) A method for anchoring round shaped cells for atomic force microscope imaging. Biophys J 68:1678–1680.  https://doi.org/10.1016/S0006-3495(95)80344-9CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    van der Mei HC, Busscher HJ, Bos R et al (2000) Direct probing by atomic force microscopy of the cell surface softness of a fibrillated and nonfibrillated oral streptococcal strain. Biophys J 78:2668–2674.  https://doi.org/10.1016/S0006-3495(00)76810-XCrossRefGoogle Scholar
  35. 35.
    Yao X, Walter J, Burke S et al (2002) Atomic force microscopy and theoretical considerations of surface properties and turgor pressures of bacteria. Colloids Surf B Biointerfaces 23:213–230.  https://doi.org/10.1016/S0927-7765(01)00249-1CrossRefGoogle Scholar
  36. 36.
    Formosa C, Herold M, Vidaillac C et al (2015) Unravelling of a mechanism of resistance to colistin in Klebsiella pneumoniae using atomic force microscopy. J Antimicrob Chemother 70:2261–2270.  https://doi.org/10.1093/jac/dkv118CrossRefPubMedGoogle Scholar
  37. 37.
    Dorobantu LS, Goss GG, Burrell RE (2012) Atomic force microscopy: a nanoscopic view of microbial cell surfaces. Micron 43:1312–1322.  https://doi.org/10.1016/j.micron.2012.05.005CrossRefPubMedGoogle Scholar
  38. 38.
    Louise Meyer R, Zhou X, Tang L et al (2010) Immobilisation of living bacteria for AFM imaging under physiological conditions. Ultramicroscopy 110:1349–1357.  https://doi.org/10.1016/j.ultramic.2010.06.010CrossRefPubMedGoogle Scholar
  39. 39.
    Verbelen C, Dupres V, Alsteens D, et al (2011) Single-molecule force spectroscopy of microbial cell envelope proteins. In: Life at the nanoscale atomic force microscopy of live cells. Pan Stanford (Singapore), Singapore, pp 317–334CrossRefGoogle Scholar
  40. 40.
    Riener CK, Stroh CM, Ebner A et al (2003) Simple test system for single molecule recognition force microscopy. Anal Chim Acta 479:59–75.  https://doi.org/10.1016/S0003-2670(02)01373-9CrossRefGoogle Scholar
  41. 41.
    Lower SK (2001) Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and alpha –FeOOH. Science 292:1360–1363.  https://doi.org/10.1126/science.1059567CrossRefPubMedGoogle Scholar
  42. 42.
    Benoit M, Gabriel D, Gerisch G, Gaub HE (2000) Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol 2:313–317.  https://doi.org/10.1038/35014000CrossRefPubMedGoogle Scholar
  43. 43.
    Dupres V, Menozzi FD, Locht C et al (2005) Nanoscale mapping and functional analysis of individual adhesins on living bacteria. Nat Methods 2:515–520.  https://doi.org/10.1038/nmeth769CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal

Personalised recommendations