Artifacts and Practical Issues in Atomic Force Microscopy

  • Peter EatonEmail author
  • Krystallenia Batziou
Part of the Methods in Molecular Biology book series (MIMB, volume 1886)


As with any other microscopic technique, in atomic force microscopy (AFM), problems can arise. Some of these happen due to improper use of the microscope by the operator, and some are due to particular characteristics of the sample. Some occur depending on the type of instrument, or from probe damage. Some of them are artifacts inherent in the technique. Knowledge of these issues is important for correct data acquisition and interpretation, and in many cases, training in AFM is inadequate. In this chapter we show examples of common artifacts in AFM and describe, where possible, how to overcome them. Other practical issues important for best practice in AFM operation, such as noise reduction and data processing, are also discussed.

Key words

Artifacts Distortions Errors Technique Imaging Force spectroscopy 



This work was financially supported by UCIBIO/REQUIMTE via grant UID/MULTI/04378/2013—POCI/01/0145/FERDER/007728 from FCT/MEC through national funds and co-financed by FEDER, under the Partnership Agreement PT2020.


  1. 1.
    Michael Hollas J (2004) Modern spectroscopy. In: Modern spectroscopy. Wiley, Hoboken, NJ, p 41–71Google Scholar
  2. 2.
    Goldstein JI, Newbury DE, Michael JR et al (2017) Image defects. In: Scanning electron microscopy and X-ray microanalysis. Springer, New York, pp 133–146Google Scholar
  3. 3.
    Spence JCH, Spence RPPJCH, DeWitt BS (2003) High-resolution Electron Microscopy, 3rd edn. Oxford University Press, New York, pp 15–47Google Scholar
  4. 4.
    Nie H-Y, Walzak MJ, Mcintyre NSCN (2002) Use of biaxially oriented polypropylene film for evaluating and cleaning contaminated atomic force microscopy probe tips: an application to blind reconstruction. Rev Sci Instrum 73:3831–3836CrossRefGoogle Scholar
  5. 5.
    Eaton P. SPM. Standards and reference samples. In: Accessed 3 May 2018
  6. 6.
    Ramirez-Aguilar KA, Rowlen KL (1998) Tip characterization from AFM images of nanometric spherical particles. Langmuir 14:2562–2566CrossRefGoogle Scholar
  7. 7.
    Bykov V, Gologanov A, Shevyakov V (1998) Test structure for SPM tip shape deconvolution. Appl Phys A Mater Sci Process 66:499–502CrossRefGoogle Scholar
  8. 8.
    Ho H, West P (1996) Optimizing AC-mode atomic force microscope imaging. Scanning 18:339–343CrossRefGoogle Scholar
  9. 9.
    Nie HY, McIntyre NS (2001) A simple and effective method of evaluating atomic force microscopy tip performance. Langmuir 17:432–436CrossRefGoogle Scholar
  10. 10.
    Sirghi L, Kylián O, Gilliland D et al (2006) Cleaning and hydrophilization of atomic force microscopy silicon probes. J Phys Chem B 110:25975–25981. Scholar
  11. 11.
    Lo YS, Huefner ND, Chan WS et al (1999) Organic and inorganic contamination on commercial Afm cantilevers. Langmuir 15:6522–6526CrossRefGoogle Scholar
  12. 12.
    Nie H-Y, McIntyre NS (2007) Unstable amplitude and noisy image induced by tip contamination in dynamic force mode atomic force microscopy. Rev Sci Instrum 78:23701CrossRefGoogle Scholar
  13. 13.
    Chen Y, Cai JY, Liu ML et al (2004) Research on double-probe, double- and triple-tip effects during atomic force microscopy scanning. Scanning 26:155–161CrossRefGoogle Scholar
  14. 14.
    Gruber A, Gspann J, Hoffmann H (1999) Nanostructures produced by cluster beam lithography. Appl Phys A Mater Sci Process 68:197–201CrossRefGoogle Scholar
  15. 15.
    Eaton P, West P (2010) Chapter 2: instrumental aspects of AFM. In: Atomic force microscopy. Oxford University Press, Oxford, pp 9–48CrossRefGoogle Scholar
  16. 16.
    Eaton P, West P (2010) Appendix B: scanner calibration and certification procedures. In: Atomic force microscopy. Oxford University Press, Oxford, pp 192–197CrossRefGoogle Scholar
  17. 17.
    Russ JC (2006) Human vision. In: The image processing handbook, 5th edn. CRC Press, Boca Raton, p 83–134Google Scholar
  18. 18.
    Klapetek P (2012) 4.4.2 Data levelling and background extraction. In: Quantitative data processing in scanning probe microscopy: SPM applications. William Andrew, Norwich, NY, p 64–67Google Scholar
  19. 19.
    Eaton P, West P (2010) Atomic force microscopy. Oxford University Press, OxfordCrossRefGoogle Scholar
  20. 20.
    Eaton P, West P (2010) Processing AFM images. In: Atomic force microscopy, 1st edn. Oxford University Press, Oxford, p 104–109CrossRefGoogle Scholar
  21. 21.
    Eaton P, West P (2010) Substrates for AFM. In: Atomic force microscopy. Oxford University Press, Oxford, pp 87–88CrossRefGoogle Scholar
  22. 22.
    Chada N, Sigdel KP, Gari RRS et al (2015) Glass is a viable substrate for precision force microscopy of membrane proteins. Sci Rep 5:12550CrossRefGoogle Scholar
  23. 23.
    Wagner P (1998) Immobilization strategies for biological scanning probe microscopy. FEBS Lett 430:112–115CrossRefGoogle Scholar
  24. 24.
    Haugstad G (2012) Chapter 5: Probing material properties I: phase imaging. In: Atomic force microscopy: understanding basic modes and advanced applications. Wiley, Hoboken, NJ, p 187–257Google Scholar
  25. 25.
    Sang X, LeBeau JM (2014) Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge. Ultramicroscopy 138:28–35CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
  2. 2.UCIBIO/REQUIMTE, Departamento de Química e BioquímicaFaculdade de Ciências da Universidade do PortoPortoPortugal

Personalised recommendations