Skip to main content

Next Generation Sequencing of Prenatal Structural Chromosomal Rearrangements Using Large-Insert Libraries

  • Protocol
  • First Online:
Prenatal Diagnosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1885))

  • 2515 Accesses

Abstract

Precise tests for genomic structural variation (SV) are essential for accurate diagnosis of prenatal genome abnormalities. The two most ubiquitous traditional methods for prenatal SV assessment, karyotyping and chromosomal microarrays, do not provide sufficient resolution for some clinically actionable SVs. Standard whole-genome sequencing (WGS) overcomes shortcomings of traditional techniques by providing base-pair resolution of the entire accessible genome. However, while sequencing costs have continued to decline in recent years, conventional WGS costs remain high for most routine clinical applications. Here, we describe a specialized WGS technique using large inserts (liWGS; also known as “jumping libraries”) to resolve large (>5000–10,000 nucleotides) SVs at kilobase-resolution in prenatal samples, and at a fraction of the cost of standard WGS. We explicate the protocols for generating liWGS libraries and supplement with an overview for processing and analyzing liWGS data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hillman SC, McMullan DJ, Williams D, Maher ER, Kilby MD (2012) Microarray comparative genomic hybridization in prenatal diagnosis: a review. Ultrasound Obstet Gynecol 40(4):385–391. https://doi.org/10.1002/uog.11180

    Article  CAS  PubMed  Google Scholar 

  2. Lichtenbelt KD, Knoers NV, Schuring-Blom GH (2011) From karyotyping to array-CGH in prenatal diagnosis. Cytogenet Genome Res 135(3–4):241–250. https://doi.org/10.1159/000334065

    Article  CAS  PubMed  Google Scholar 

  3. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, Church DM, Crolla JA, Eichler EE, Epstein CJ, Faucett WA, Feuk L, Friedman JM, Hamosh A, Jackson L, Kaminsky EB, Kok K, Krantz ID, Kuhn RM, Lee C, Ostell JM, Rosenberg C, Scherer SW, Spinner NB, Stavropoulos DJ, Tepperberg JH, Thorland EC, Vermeesch JR, Waggoner DJ, Watson MS, Martin CL, Ledbetter DH (2010) Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet 86(5):749–764. https://doi.org/10.1016/j.ajhg.2010.04.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cheung VG, Nowak N, Jang W, Kirsch IR, Zhao S, Chen XN, Furey TS, Kim UJ, Kuo WL, Olivier M, Conroy J, Kasprzyk A, Massa H, Yonescu R, Sait S, Thoreen C, Snijders A, Lemyre E, Bailey JA, Bruzel A, Burrill WD, Clegg SM, Collins S, Dhami P, Friedman C, Han CS, Herrick S, Lee J, Ligon AH, Lowry S, Morley M, Narasimhan S, Osoegawa K, Peng Z, Plajzer-Frick I, Quade BJ, Scott D, Sirotkin K, Thorpe AA, Gray JW, Hudson J, Pinkel D, Ried T, Rowen L, Shen-Ong GL, Strausberg RL, Birney E, Callen DF, Cheng JF, Cox DR, Doggett NA, Carter NP, Eichler EE, Haussler D, Korenberg JR, Morton CC, Albertson D, Schuler G, de Jong PJ, Trask BJ (2001) Integration of cytogenetic landmarks into the draft sequence of the human genome. Nature 409(6822):953–958. https://doi.org/10.1038/35057192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Furey TS, Haussler D (2003) Integration of the cytogenetic map with the draft human genome sequence. Hum Mol Genet 12(9):1037–1044

    Article  CAS  PubMed  Google Scholar 

  6. Smeets DF (2004) Historical prospective of human cytogenetics: from microscope to microarray. Clin Biochem 37(6):439–446. https://doi.org/10.1016/j.clinbiochem.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  7. Warburton D (1991) De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am J Hum Genet 49(5):995–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shaffer LG, Bejjani BA (2006) Medical applications of array CGH and the transformation of clinical cytogenetics. Cytogenet Genome Res 115(3–4):303–309. https://doi.org/10.1159/000095928

    Article  CAS  PubMed  Google Scholar 

  9. Francescatto L, Katsanis N (2015) Newborn screening and the era of medical genomics. Semin Perinatol 39(8):617–622. https://doi.org/10.1053/j.semperi.2015.09.010

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tattini L, D'Aurizio R, Magi A (2015) Detection of genomic structural variants from next-generation sequencing data. Front Bioeng Biotechnol 3:92. https://doi.org/10.3389/fbioe.2015.00092

    Article  PubMed  PubMed Central  Google Scholar 

  11. Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46. https://doi.org/10.1038/nrg2626

    Article  CAS  PubMed  Google Scholar 

  12. Zhang W, Cui H, Wong LJ (2014) Application of next generation sequencing to molecular diagnosis of inherited diseases. Top Curr Chem 336:19–45. https://doi.org/10.1007/128_2012_325

    Article  CAS  PubMed  Google Scholar 

  13. Talkowski ME, Ernst C, Heilbut A, Chiang C, Hanscom C, Lindgren A, Kirby A, Liu S, Muddukrishna B, Ohsumi TK, Shen Y, Borowsky M, Daly MJ, Morton CC, Gusella JF (2011) Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research. Am J Hum Genet 88(4):469–481. https://doi.org/10.1016/j.ajhg.2011.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Korbel JO, Urban AE, Affourtit JP, Godwin B, Grubert F, Simons JF, Kim PM, Palejev D, Carriero NJ, Du L, Taillon BE, Chen Z, Tanzer A, Saunders AC, Chi J, Yang F, Carter NP, Hurles ME, Weissman SM, Harkins TT, Gerstein MB, Egholm M, Snyder M (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science 318(5849):420–426. https://doi.org/10.1126/science.1149504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Collins FS, Weissman SM (1984) Directional cloning of DNA fragments at a large distance from an initial probe: a circularization method. Proc Natl Acad Sci U S A 81(21):6812–6816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hanscom C, Talkowski M (2014) Design of large-insert jumping libraries for structural variant detection using illumina sequencing. Curr Protoc Hum Genet 80:7.22.1–7.2229. https://doi.org/10.1002/0471142905.hg0722s80

    Article  CAS  Google Scholar 

  17. Talkowski ME, Ordulu Z, Pillalamarri V, Benson CB, Blumenthal I, Connolly S, Hanscom C, Hussain N, Pereira S, Picker J, Rosenfeld JA, Shaffer LG, Wilkins-Haug LE, Gusella JF, Morton CC (2012) Clinical diagnosis by whole-genome sequencing of a prenatal sample. N Engl J Med 367(23):2226–2232. https://doi.org/10.1056/NEJMoa1208594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, Ernst C, Hanscom C, Rossin E, Lindgren AM, Pereira S, Ruderfer D, Kirby A, Ripke S, Harris DJ, Lee JH, Ha K, Kim HG, Solomon BD, Gropman AL, Lucente D, Sims K, Ohsumi TK, Borowsky ML, Loranger S, Quade B, Lage K, Miles J, Wu BL, Shen Y, Neale B, Shaffer LG, Daly MJ, Morton CC, Gusella JF (2012) Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell 149(3):525–537. https://doi.org/10.1016/j.cell.2012.03.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wapner RJ, Martin CL, Levy B, Ballif BC, Eng CM, Zachary JM, Savage M, Platt LD, Saltzman D, Grobman WA, Klugman S, Scholl T, Simpson JL, McCall K, Aggarwal VS, Bunke B, Nahum O, Patel A, Lamb AN, Thom EA, Beaudet AL, Ledbetter DH, Shaffer LG, Jackson L (2012) Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med 367(23):2175–2184. https://doi.org/10.1056/NEJMoa1203382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brand H, Collins RL, Hanscom C, Rosenfeld JA, Pillalamarri V, Stone MR, Kelley F, Mason T, Margolin L, Eggert S, Mitchell E, Hodge JC, Gusella JF, Sanders SJ, Talkowski ME (2015) Paired-duplication signatures mark cryptic inversions and other complex structural variation. Am J Hum Genet 97(1):170–176. https://doi.org/10.1016/j.ajhg.2015.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brand H, Pillalamarri V, Collins RL, Eggert S, O'Dushlaine C, Braaten EB, Stone MR, Chambert K, Doty ND, Hanscom C, Rosenfeld JA, Ditmars H, Blais J, Mills R, Lee C, Gusella JF, McCarroll S, Smoller JW, Talkowski ME, Doyle AE (2014) Cryptic and complex chromosomal aberrations in early-onset neuropsychiatric disorders. Am J Hum Genet 95(4):454–461. https://doi.org/10.1016/j.ajhg.2014.09.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Talkowski ME, Mullegama SV, Rosenfeld JA, van Bon BW, Shen Y, Repnikova EA, Gastier-Foster J, Thrush DL, Kathiresan S, Ruderfer DM, Chiang C, Hanscom C, Ernst C, Lindgren AM, Morton CC, An Y, Astbury C, Brueton LA, Lichtenbelt KD, Ades LC, Fichera M, Romano C, Innis JW, Williams CA, Bartholomew D, Van Allen MI, Parikh A, Zhang L, Wu BL, Pyatt RE, Schwartz S, Shaffer LG, de Vries BB, Gusella JF, Elsea SH (2011) Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder. Am J Hum Genet 89(4):551–563. https://doi.org/10.1016/j.ajhg.2011.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hodge JC, Mitchell E, Pillalamarri V, Toler TL, Bartel F, Kearney HM, Zou YS, Tan WH, Hanscom C, Kirmani S, Hanson RR, Skinner SA, Rogers RC, Everman DB, Boyd E, Tapp C, Mullegama SV, Keelean-Fuller D, Powell CM, Elsea SH, Morton CC, Gusella JF, DuPont B, Chaubey A, Lin AE, Talkowski ME (2014) Disruption of MBD5 contributes to a spectrum of psychopathology and neurodevelopmental abnormalities. Mol Psychiatry 19(3):368–379. https://doi.org/10.1038/mp.2013.42

    Article  CAS  PubMed  Google Scholar 

  24. Kloosterman WP, Guryev V, van Roosmalen M, Duran KJ, de Bruijn E, Bakker SC, Letteboer T, van Nesselrooij B, Hochstenbach R, Poot M, Cuppen E (2011) Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet 20(10):1916–1924. https://doi.org/10.1093/hmg/ddr073

    Article  CAS  PubMed  Google Scholar 

  25. Kloosterman WP, Tavakoli-Yaraki M, van Roosmalen MJ, van Binsbergen E, Renkens I, Duran K, Ballarati L, Vergult S, Giardino D, Hansson K, Ruivenkamp CA, Jager M, van Haeringen A, Ippel EF, Haaf T, Passarge E, Hochstenbach R, Menten B, Larizza L, Guryev V, Poot M, Cuppen E (2012) Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep 1(6):648–655. https://doi.org/10.1016/j.celrep.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  26. Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A (2010) Manipulation of FASTQ data with Galaxy. Bioinformatics 26(14):1783–1785. https://doi.org/10.1093/bioinformatics/btq281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Faust GG, Hall IM (2014) SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics 30(17):2503–2505. https://doi.org/10.1093/bioinformatics/btu314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P (2015) Sambamba: fast processing of NGS alignment formats. Bioinformatics. https://doi.org/10.1093/bioinformatics/btv098

  30. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT (2011) BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics 27(12):1691–1692. https://doi.org/10.1093/bioinformatics/btr174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Talkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Currall, B.B., Antolik, C.W., Collins, R.L., Talkowski, M.E. (2019). Next Generation Sequencing of Prenatal Structural Chromosomal Rearrangements Using Large-Insert Libraries. In: Levy, B. (eds) Prenatal Diagnosis. Methods in Molecular Biology, vol 1885. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8889-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8889-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8887-7

  • Online ISBN: 978-1-4939-8889-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics