Statistical Network Inference for Time-Varying Molecular Data with Dynamic Bayesian Networks

  • Frank DondelingerEmail author
  • Sach Mukherjee
Part of the Methods in Molecular Biology book series (MIMB, volume 1883)


In this chapter, we review the problem of network inference from time-course data, focusing on a class of graphical models known as dynamic Bayesian networks (DBNs). We discuss the relationship of DBNs to models based on ordinary differential equations, and consider extensions to nonlinear time dynamics. We provide an introduction to time-varying DBN models, which allow for changes to the network structure and parameters over time. We also discuss causal perspectives on network inference, including issues around model semantics that can arise due to missing variables. We present a case study of applying time-varying DBNs to gene expression measurements over the life cycle of Drosophila melanogaster. We finish with a discussion of future perspectives, including possible applications of time-varying network inference to single-cell gene expression data.

Key words

Time-varying networks Dynamic Bayesian networks Changepoint models 


  1. 1.
    Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4(11):682–690PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Califano A, Butte AJ, Friend S, Ideker T, Schadt E (2012) Leveraging models of cell regulation and GWAS data in integrative network-based association studies. Nat Genet 44(8):841–847PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8:565PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D (2007) How to infer gene networks from expression profiles. Mol Syst Biol 3:78PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Akbani R, Ng PKS, Werner HMJ, Shahmoradgoli M, Zhang F, Ju Z, Liu W, Yang JY, Yoshihara K, Li J, Ling S, Seviour EG, Ram PT, Minna JD, Diao L, Tong P, Heymach JV, Hill SM, Dondelinger F, Städler N, Byers LA, Meric-Bernstam F, Weinstein JN, Broom BM, Verhaak RGW, Liang H, Mukherjee S, Lu Y, Mills GB (2014) A pan-cancer proteomic perspective on the cancer genome atlas. Nat Commun 5:3887PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Le Novère N (2015) Quantitative and logic modelling of molecular and gene networks. Nat Rev Genet 16(3):146–158PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Yugi K, Kubota H, Hatano A, Kuroda S (2016) Trans-Omics: how to reconstruct biochemical networks across multiple ‘omic’ layers. Trends Biotechnol 34(4):276–290PubMedCrossRefGoogle Scholar
  9. 9.
    Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. MIT Press, CambridgeGoogle Scholar
  10. 10.
    Murphy KP (2002) Dynamic Bayesian networks: representation, inference and learning. Dissertation, University of California, BerkeleyGoogle Scholar
  11. 11.
    Husmeier D (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19(17):2271–2282PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hill SM, Lu Y, Molina J, Heiser LM, Spellman PT, Speed TP, Gray JW, Mills GB, Mukherjee S (2012) Bayesian inference of signaling network topology in a cancer cell line. Bioinformatics 28(21):2804–2810PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Grzegorczyk M, Husmeier D (2008) Improving the structure MCMC sampler for Bayesian networks by introducing a new edge reversal move. Mach Learn 71(2):265–305CrossRefGoogle Scholar
  14. 14.
    Goudie RJ, Mukherjee S (2016) A Gibbs sampler for learning DAGs. J Mach Learn Res 17(1):1032–1070Google Scholar
  15. 15.
    Oates CJ, Mukherjee S (2012) Network inference and biological dynamics. Ann Appl Stat 6(3):1209PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Oates CJ, Korkola J, Gray JW, Mukherjee S, et al (2014) Joint estimation of multiple related biological networks. Ann Appl Stat 8(3):1892–1919CrossRefGoogle Scholar
  17. 17.
    Hill SM, Nesser NK, Johnson-Camacho K, Jeffress M, Johnson A, Boniface C, Spencer SE, Lu Y, Heiser LM, Lawrence Y, et al (2017) Context specificity in causal signaling networks revealed by phosphoprotein profiling. Cell Syst 4(1):73–83PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Werhli AV, Husmeier D (2008) Gene regulatory network reconstruction by Bayesian integration of prior knowledge and/or different experimental conditions. J Bioinformatics Comput Biol 6(3):543–572CrossRefGoogle Scholar
  19. 19.
    Dondelinger F, Husmeier D, Lèbre S (2012) Dynamic Bayesian networks in molecular plant science: inferring gene regulatory networks from multiple gene expression time series. Euphytica 183(3):361–377CrossRefGoogle Scholar
  20. 20.
    Penfold C, Buchanan-Wollaston V, Denby K, Wild D (2012) Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks. Bioinformatics 28(12):i233–i241PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Danaher P, Wang P, Witten DM (2014) The joint graphical lasso for inverse covariance estimation across multiple classes. J R Stat Soc Ser B (Stat Methodol) 76(2):373–397CrossRefGoogle Scholar
  22. 22.
    Xu TR, Vyshemirsky V, Gormand A, von Kriegsheim A, Girolami M, Baillie GS, Ketley D, Dunlop AJ, Milligan G, Houslay MD, et al (2010) Inferring signaling pathway topologies from multiple perturbation measurements of specific biochemical species. Sci Signal 3(113):ra20PubMedCrossRefGoogle Scholar
  23. 23.
    Oates CJ, Dondelinger F, Bayani N, Korkola J, Gray JW, Mukherjee S (2014) Causal network inference using biochemical kinetics. Bioinformatics 30(17):i468–i474PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Äijö T, Lähdesmäki H (2009) Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinformatics 25(22):2937–2944PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Talih M, Hengartner N (2005) Structural learning with time-varying components: tracking the cross-section of financial time series. J R Stat Soc B 67(3):321–341CrossRefGoogle Scholar
  26. 26.
    Xuan X, Murphy K (2007) Modeling changing dependency structure in multivariate time series. In: Ghahramani Z (ed) Proceedings of the 24th annual international conference on machine learning (ICML 2007). Omnipress, Madison, pp 1055–1062Google Scholar
  27. 27.
    Robinson JW, Hartemink AJ (2009) Non-stationary dynamic Bayesian networks. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in neural information processing systems (NIPS), vol 21, pp 1369–1376Google Scholar
  28. 28.
    Robinson J, Hartemink A (2010) Learning non-stationary dynamic Bayesian networks. J Mach Learn Res 11:3647–3680Google Scholar
  29. 29.
    Grzegorczyk M, Husmeier D (2009) Non-stationary continuous dynamic Bayesian networks. In: Bengio Y, Schuurmans D, Lafferty J, Williams CKI, Culotta A (eds) Advances in neural information processing systems (NIPS), vol 22, pp 682–690Google Scholar
  30. 30.
    Grzegorczyk M, Husmeier D (2011) Non-homogeneous dynamic Bayesian networks for continuous data. Mach Learn 83:355–419CrossRefGoogle Scholar
  31. 31.
    Ahmed A, Xing EP (2009) Recovering time-varying networks of dependencies in social and biological studies. Proc Natl Acad Sci 106:11878–11883PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Lèbre S (2007) Stochastic process analysis for genomics and dynamic Bayesian networks inference. PhD thesis, Université d’Evry-Val-d’Essonne, ÉvryGoogle Scholar
  33. 33.
    Lèbre S, Becq J, Devaux F, Lelandais G, Stumpf M (2010) Statistical inference of the time-varying structure of gene-regulation networks. BMC Syst Biol 4:130PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kolar M, Song L, Xing E (2009) Sparsistent learning of varying-coefficient models with structural changes. In: Bengio Y, Schuurmans D, Lafferty J, Williams CKI, Culotta A (eds) Advances in neural information processing systems (NIPS), vol 22, pp 1006–1014Google Scholar
  35. 35.
    Dondelinger F, Lèbre S, Husmeier D (2013) Non-homogeneous dynamic Bayesian networks with Bayesian regularization for inferring gene regulatory networks with gradually time-varying structure. Mach Learn 90:191–230CrossRefGoogle Scholar
  36. 36.
    Green P (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711–732CrossRefGoogle Scholar
  37. 37.
    Zellner A (1986) On assessing prior distributions and Bayesian regression analysis with g-prior distributions. In: Goel P, Zellner A (eds) Bayesian inference and decision techniques. Elsevier, New York, pp 233–243Google Scholar
  38. 38.
    Pearl J (2009) Causality. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  39. 39.
    Pearl J (1995) Causal diagrams for empirical research. Biometrika 82(4):669–688CrossRefGoogle Scholar
  40. 40.
    Spencer SE, Hill SM, Mukherjee S (2015) Inferring network structure from interventional time-course experiments. Ann Appl Stat 9(1):507–524CrossRefGoogle Scholar
  41. 41.
    Hill SM, Heiser LM, Cokelaer T, Unger M, Nesser NK, Carlin DE, Zhang Y, Sokolov A, Paull EO, Wong CK, et al (2016) Inferring causal molecular networks: empirical assessment through a community-based effort. Nat Methods 13(4):310–318PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Arbeitman M, Furlong E, Imam F, Johnson E, Null B, Baker B, Krasnow M, Scott M, Davis R, White K (2002) Gene expression during the life cycle of Drosophila melanogaster. Science 297(5590):2270–2275PubMedCrossRefGoogle Scholar
  43. 43.
    Guo F, Hanneke S, Fu W, Xing E (2007) Recovering temporally rewiring networks: a model-based approach. In: Proceedings of the 24th international conference on machine learning. ACM, New York, p 328Google Scholar
  44. 44.
    Zhao W, Serpedin E, Dougherty E (2006) Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 22(17):2129PubMedCrossRefGoogle Scholar
  45. 45.
    Sims D, Bursteinas B, Gao Q, Zvelebil M, Baum B (2006) FLIGHT: database and tools for the integration and cross-correlation of large-scale RNAi phenotypic datasets. Nucleic Acids Res 34:D479–D483PubMedCrossRefGoogle Scholar
  46. 46.
    Homyk T Jr, Emerson C Jr (1988) Functional interactions between unlinked muscle genes within haploinsufficient regions of the Drosophila genome. Genetics 119(1):105PubMedGoogle Scholar
  47. 47.
    Nongthomba U, Cummins M, Clark S, Vigoreaux J, Sparrow J (2003) Suppression of muscle hypercontraction by mutations in the myosin heavy chain gene of Drosophila melanogaster. Genetics 164(1):209Google Scholar
  48. 48.
    Montana E, Littleton J (2004) Characterization of a hypercontraction-induced myopathy in Drosophila caused by mutations in mhc. J Cell Biol 164(7):1045PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Parkhurst S, Ish-Horowicz D (1991) wimp, a dominant maternal-effect mutation, reduces transcription of a specific subset of segmentation genes in Drosophila. Genes Dev 5(3):341CrossRefGoogle Scholar
  50. 50.
    Formstecher E, Aresta S, Collura V, Hamburger A, Meil A, Trehin A, Reverdy C, Betin V, Maire S, Brun C, et al (2005) Protein interaction mapping: a Drosophila case study. Genome Res 15(3):376PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Sanchez C, Lachaize C, Janody F, Bellon B, Roeder L, Euzenat J, Rechenmann F, Jacq B (1999) Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an internet database. Nucleic Acids Res 27(1):89PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Dondelinger F, Lèbre S (2016) EDISON: Network reconstruction and changepoint detection, Version 1.1.1Google Scholar
  53. 53.
    Chan TE, Stumpf MPH, Babtie AC (2017) Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst 5(3):251–267.e3Google Scholar
  54. 54.
    Filippi S, Holmes CC (2017) A Bayesian nonparametric approach to testing for dependence between random variables. Bayesian Anal 12(4):919–938CrossRefGoogle Scholar
  55. 55.
    Moignard V, Woodhouse S, Haghverdi L, Lilly AJ, Tanaka Y, Wilkinson AC, Buettner F, Macaulay IC, Jawaid W, Diamanti E, Nishikawa SI, Piterman N, Kouskoff V, Theis FJ, Fisher J, Göttgens B (2015) Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nat Biotechnol 33(3):269–276PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Reid JE, Wernisch L (2016) Pseudotime estimation: deconfounding single cell time series. Bioinformatics 32(19):2973–2980PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Campbell KR, Yau C (2016) Order under uncertainty: robust differential expression analysis using probabilistic models for pseudotime inference. PLoS computational biology 12.11: e1005212PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32(4):381–386PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ocone A, Haghverdi L, Mueller NS, Theis FJ (2015) Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data. Bioinformatics 31(12):i89–i96PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Matsumoto H, Kiryu H, Furusawa C, Ko MSH, Ko SBH, Gouda N, Hayashi T, Nikaido I (2017) SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics 33(15):2314–2321PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Sanchez-Castillo M, Blanco D, Tienda-Luna IM, Carrion MC, Huang Y (2018) A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Bioinformatics 34:964–970PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lancaster Medical SchoolLancaster UniversityLancasterUK
  2. 2.German Center for Neurodegenerative Diseases (DZNE)BonnGermany

Personalised recommendations