Skip to main content

Learning Differential Module Networks Across Multiple Experimental Conditions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1883))

Abstract

Module network inference is a statistical method to reconstruct gene regulatory networks, which uses probabilistic graphical models to learn modules of coregulated genes and their upstream regulatory programs from genome-wide gene expression and other omics data. Here, we review the basic theory of module network inference, present protocols for common gene regulatory network reconstruction scenarios based on the Lemon-Tree software, and show, using human gene expression data, how the software can also be applied to learn differential module networks across multiple experimental conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci U S A 103:8577–8582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:C47–C52

    Article  CAS  PubMed  Google Scholar 

  3. Qi Y, Ge H (2006) Modularity and dynamics of cellular networks. PLoS Comput Biol 2:e174

    Article  PubMed  PubMed Central  Google Scholar 

  4. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95(25):14863–14868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998) Comprehensive identificationof cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9:3273–3297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N (2003) Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 34:166–167

    Article  CAS  PubMed  Google Scholar 

  7. Friedman N (2004) Inferring cellular networks using probabilistic graphical models. Science 308:799–805

    Article  Google Scholar 

  8. Koller D, Friedman N (2009) Probabilistic graphical models: principles and techniques. The MIT Press, Cambridge

    Google Scholar 

  9. Lee SI, Pe’er D, Dudley AM, Church GM, Koller D (2006) Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. Proc Natl Acad Sci U S A 103:14062–14067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang W, Zhu J, Schadt EE, Liu JS (2010) A Bayesian partition method for detecting pleiotropic and epistatic eQTL modules. PLoS Comput Biol 6(1):e1000642

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee S-I, Dudley AM, Drubin D, Silver PA, Krogan NJ, Pe’er D, Koller D (2009) Learning a prior on regulatory potential from eQTL data. PLoS Genet 5(1):e1000358

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bonnet E, Tatari M, Joshi A, Michoel T, Marchal K, Berx G, Van de Peer Y (2010a) Network inference from a cancer gene expression data set identifies microRNA regulated modules. PLoS One 5:e10162

    Article  PubMed  PubMed Central  Google Scholar 

  13. Bonnet E, Michoel T, Van de Peer Y (2010b) Prediction of a gene regulatory network linked to prostate cancer from gene expression, microRNA and clinical data. Bioinformatics 26:i683–i644

    Article  Google Scholar 

  14. Akavia UD, Litvin O, Kim J, Sanchez-Garcia F, Kotliar D, Causton HC, Pochanard P, Mozes E, Garraway LA, Pe’er D (2010) An integrated approach to uncover drivers of cancer. Cell 143:1005–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bonnet E, Calzone L, Michoel T (2015) Integrative multi-omics module network inference with Lemon-Tree. PLoS Comput Biol 11(2):e1003983

    Article  PubMed  PubMed Central  Google Scholar 

  16. Novershtern N, Regev A, Friedman N (2011) Physical module networks: an integrative approach for reconstructing transcription regulation. Bioinformatics 27(13):i177–i185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Michoel T, De Smet R, Joshi A, Van de Peer Y, Marchal K (2009) Comparative analysis of module-based versus direct methods for reverse-engineering transcriptional regulatory networks. BMC Syst Biol 3:49

    Article  PubMed  PubMed Central  Google Scholar 

  18. Roy S, Lagree S, Hou Z, Thomson JA, Stewart R, Gasch AP (2013) Integrated module and gene-specific regulatory inference implicates upstream signaling networks. PLoS Comput Biol 9(10):e1003252

    Article  PubMed  PubMed Central  Google Scholar 

  19. Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, Chan BK, Matcuk GR, Barry CT, Chang HY, Kuo MD (2007) Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol 25:675–680

    Article  CAS  PubMed  Google Scholar 

  20. Zhu H, Yang H, Owen MR (2007) Combined microarray analysis uncovers self-renewal related signaling in mouse embryonic stem cells. Syst Synth Biol 1:171–181

    Article  PubMed  Google Scholar 

  21. Li J, Liu ZJ, Pan YC, Liu Q, Fu X, Cooper NG, Li YX, Qiu MS, Shi TL (2007) Regulatory module network of basic/helix-loop-helix transcription factors in mouse brain. Genome Biol 8:R244 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  22. Novershtern N, Itzhaki Z, Manor O, Friedman N, Kaminski N (2008) A functional and regulatory map of asthma. Am J Respir Cell Mol Biol 38:324–336

    Article  CAS  PubMed  Google Scholar 

  23. Amit I, Garber M, Chevrier N, Leite AP, Donner Y, Eisenhaure T, Guttman M, Grenier JK, Li W, Zuk O, Schubert LA, Birditt B, Shay T, Goren A, Zhang X, Smith Z, Deering R, McDonald RC, Cabili M, Bernstein BE, Rinn JL, Meissner A, Root DE, Hacohen N, Regev A (2009) Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326:257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vermeirssen V, Joshi A, Michoel T, Bonnet E, Casneuf T, Van de Peer Y (2009) Transcription regulatory networks in Caenorhabditis elegans inferred through reverse-engineering of gene expression profiles constitute biological hypotheses for metazoan development. Mol. BioSyst. 5:1817–1830.

    Article  CAS  PubMed  Google Scholar 

  25. Novershtern N, Subramanian A, Lawton LN, Mak RH, Nicholas Haining W, McConkey ME, Habib N, Yosef N, Chang CY, Shay T, et al (2011) Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144(2):296–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu M, Deng X, Joshi T, Xu D, Stacey G, Cheng J (2012) Reconstructing differentially co-expressed gene modules and regulatory networks of soybean cells. BMC Genom 13(1):437

    Article  CAS  Google Scholar 

  27. Arhondakis S, Bita CE, Perrakis A, Manioudaki ME, Krokida A, Kaloudas D, Kalaitzis P (2016) In silico transcriptional regulatory networks involved in tomato fruit ripening. Front Plant Sci 7:1234

    Article  PubMed  PubMed Central  Google Scholar 

  28. Behdani E, Bakhtiarizadeh MR (2017) Construction of an integrated gene regulatory network link to stress-related immune system in cattle. Genetica 145(4–5):441–454

    Article  CAS  PubMed  Google Scholar 

  29. Marchi FA, Martins DC, Barros-Filho MC, Kuasne H, Lopes AFB, Brentani H, Filho JCST, Guimarães GC, Faria EF, Scapulatempo-Neto C, et al (2017) Multidimensional integrative analysis uncovers driver candidates and biomarkers in penile carcinoma. Sci Rep 7:6707

    Article  PubMed  PubMed Central  Google Scholar 

  30. de la Fuente A (2010) From ‘differential expression’ to ‘differential networking’–identification of dysfunctional regulatory networks in diseases. Trends Genet 26(7):326–333

    Article  PubMed  Google Scholar 

  31. Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8(1):565

    PubMed  PubMed Central  Google Scholar 

  32. Gambardella G, Moretti MN, De Cegli R, Cardone L, Peron A, Di Bernardo D (2013) Differential network analysis for the identification of condition-specific pathway activity and regulation. Bioinformatics 29(14):1776–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ha MJ, Baladandayuthapani V, Do K-A (2015) DINGO: differential network analysis in genomics. Bioinformatics 31(21):3413–3420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McKenzie AT, Katsyv I, Song W-M, Wang M, Zhang B (2016) DGCA: A comprehensive r package for differential gene correlation analysis. BMC Syst Biol 10(1):106

    Article  PubMed  PubMed Central  Google Scholar 

  35. Voigt A, Nowick K, Almaas E (2017). A composite network of conserved and tissue specific gene interactions reveals possible genetic interactions in glioma. PLOS Comput Biol 13(9):e1005739

    Article  PubMed  PubMed Central  Google Scholar 

  36. Roy S, Wapinski I, Pfiffner J, French C, Socha A, Konieczka J, Habib N, Kellis M, Thompson D, Regev A (2013) Arboretum: reconstruction and analysis of the evolutionary history of condition-specific transcriptional modules. Genome Res 23(6):1039–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Joshi A, De Smet R, Marchal K, Van de Peer Y, Michoel T (2009) Module networks revisited: computational assessment and prioritization of model predictions. Bioinformatics 25(4):490–496

    Article  CAS  PubMed  Google Scholar 

  38. Segal E, Pe’er D, Regev A, Koller D, Friedman N (2005) Learning module networks. J Mach Learn Res 6:557–588

    Google Scholar 

  39. Michoel T, Maere S, Bonnet E, Joshi A, Saeys Y, Van den Bulcke T, Van Leemput K, van Remortel P, Kuiper M, Marchal K, Van de Peer Y (2007) Validating module networks learning algorithms using simulated data. BMC Bioinf 8:S5

    Article  Google Scholar 

  40. Qin ZS (2006) Clustering microarray gene expression data using weighted Chinese restaurant process. Bioinformatics 22:1988–1997

    Article  CAS  PubMed  Google Scholar 

  41. Joshi A, Van de Peer Y, Michoel T (2008) Analysis of a Gibbs sampler for model based clustering of gene expression data. Bioinformatics 24(2):176–183

    Article  CAS  PubMed  Google Scholar 

  42. Lu Y, Zhou X, Nardini C (2017) Dissection of the module network implementation “LemonTree”: enhancements towards applications in metagenomics and translation in autoimmune maladies. Mol BioSyst 13(10):2083–2091

    Article  CAS  PubMed  Google Scholar 

  43. Michoel T, Nachtergaele B (2012) Alignment and integration of complex networks by hypergraph-based spectral clustering. Phys Rev E 86:056111

    Article  Google Scholar 

  44. Maere S, Heymans K, Kuiper M (2005) BiNGO: a cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    Article  CAS  PubMed  Google Scholar 

  45. Hägg S, Skogsberg J, Lundström J, Noori P, Nilsson R, Zhong H, Maleki S, Shang MM, Brinne B, Bradshaw M, Bajic VB, Samnegard A, Silveira A, Kaplan LM, Gigante B, Leander K, de Faire U, Rosfors S, Lockowandt U, Liska J, Konrad P, Takolander R, Franco-Cereceda A, Schadt EE, Ivert T, Hamsten A, Tegner J, Björkegren J (2009) Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: the Stockholm Atherosclerosis Gene Expression (STAGE) study. PLoS Genet 5(12):e1000754

    Article  PubMed  PubMed Central  Google Scholar 

  46. Foroughi Asl H, Talukdar H, Kindt A, Jain R, Ermel R, Ruusalepp A, Nguyen K-D, Dobrin R, Reilly D, CARDIoGRAM Consortium, Schunkert H, Samani N, Braenne I, Erdmann J, Melander O, Qi J, Ivert T, Skogsberg J, Schadt EE, Michoel T, Björkegren J (2015) Expression quantitative trait loci acting across multiple tissues are enriched in inherited risk of coronary artery disease. Circ Cardiov Genet 8:305–315

    Article  Google Scholar 

  47. Talukdar H, Foroughi Asl H, Jain R, Ermel R, Ruusalepp A, Franzén O, Kidd B, Readhead B, Giannarelli C, Ivert T, Dudley J, Civelek M, Lusis A, Schadt E, Skogsberg J, Michoel T, Björkegren JLM (2016) Cross-tissue regulatory gene networks in coronary artery disease. Cell Syst 2:196–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schadt EE (2009) Molecular networks as sensors and drivers of common human diseases. Nature 461:218–223

    Article  CAS  PubMed  Google Scholar 

  49. Selathurai A, Deswaerte V, Kanellakis P, Tipping P, Toh B-H, Bobik A, Kyaw T (2014) Natural killer (NK) cells augment atherosclerosis by cytotoxic-dependent mechanisms. Cardiovasc Res 102(1):128–137

    Article  CAS  PubMed  Google Scholar 

  50. Sikorski K, Wesoly J, Bluyssen HAR (2014) Data mining of atherosclerotic plaque transcriptomes predicts STAT1-dependent inflammatory signal integration in vascular disease. Int J Mol Sci 15(8):14313–14331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martinet W, Schrijvers DM, De Meyer GRY (2011) Pharmacological modulation of cell death in atherosclerosis: a promising approach towards plaque stabilization? Br J Pharmacol 164(1):1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gjurich BN, Taghavie-Moghadam PL, Ley K, Galkina EV (2014) L-selectin deficiency decreases aortic B1a and Breg subsets and promotes atherosclerosis. Thromb Haemost 112(4):803

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rekhter MD (1999) Collagen synthesis in atherosclerosis: too much and not enough. Cardiovasc Res 41(2):376–384

    Article  CAS  PubMed  Google Scholar 

  54. Perez-Sanchez C, Barbarroja N, Messineo S, Ruiz-LimonP, Rodriguez-Ariza A, Jimenez-Gomez Y, Khamashta MA, Collantes-Estevez E, Jose Cuadrado M©, Angeles Aguirre M©, et al (2015) Gene profiling reveals specific molecular pathways in the pathogenesis of atherosclerosis and cardiovascular disease in antiphospholipid syndrome, systemic lupus erythematosus and antiphospholipid syndrome with lupus. Ann Rheum Dis 74(7): 1441–1449

    Google Scholar 

  55. Fu S, Zhao H, Shi J, Abzhanov A, Crawford K, Ohno-Machado L, Zhou J, Du Y, Kuo WP, Zhang J, et al Peripheral arterial occlusive disease: global gene expression analyses suggest a major role for immune and inflammatory responses. BMC Genomics 9(1): 369

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

PE and TM are supported by Roslin Institute Strategic Programme funding from the BBSRC [BB/P013732/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Michoel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Erola, P., Bonnet, E., Michoel, T. (2019). Learning Differential Module Networks Across Multiple Experimental Conditions. In: Sanguinetti, G., Huynh-Thu, V. (eds) Gene Regulatory Networks. Methods in Molecular Biology, vol 1883. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8882-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8882-2_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8881-5

  • Online ISBN: 978-1-4939-8882-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics