Advertisement

Evaluating the Metabolic Alterations in Pancreatic Cancer

  • Aneesha Dasgupta
  • Surendra K. Shukla
  • Venugopal Gunda
  • Ryan J. King
  • Pankaj K. SinghEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1882)

Abstract

Metabolic reprograming is an established hallmark of cancer cells. Pancreatic cancer cells, by virtue of the underlying oncogenic drivers, demonstrate metabolic reprograming to sustain growth, invasiveness, and therapy resistance. The increased demands of the growing tumor cells alter the metabolic and signaling pathways to meet the growing nutrient requirements. Investigating the metabolic vulnerabilities of tumor cells can help in developing effective therapeutics to target pancreatic cancer. In this chapter, we explain in detail the methods to evaluate the metabolic changes occurring in the tumor. This includes the glucose/glutamine uptake assays and the measurement of reactive oxygen species, extracellular acidification rate, and oxygen consumption rate in the tumor cells. All these physiological assays help in understanding the metabolic nature of the tumor.

Key words

Cancer metabolism Pancreatic cancer Glucose uptake Glutamine uptake Reactive oxygen species ECAR OCR 

References

  1. 1.
    Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E et al (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149:656–670CrossRefGoogle Scholar
  2. 2.
    Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M et al (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496:101–105CrossRefGoogle Scholar
  3. 3.
    Gunda V, Souchek J, Abrego J, Shukla SK, Goode GD, Vernucci E et al (2017) MUC1-mediated metabolic alterations regulate response to radiotherapy in pancreatic cancer. Clin Cancer Res 23:5881–5891CrossRefGoogle Scholar
  4. 4.
    Shukla SK, Purohit V, Mehla K, Gunda V, Chaika NV, Vernucci E et al (2017) MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer. Cancer Cell 32:71–87 e7CrossRefGoogle Scholar
  5. 5.
    Mazarico JM, Sanchez-Arevalo Lobo VJ, Favicchio R, Greenhalf W, Costello E, Carrillo-de Santa Pau E et al (2016) Choline kinase alpha (CHKalpha) as a therapeutic target in pancreatic ductal adenocarcinoma: expression, predictive value, and sensitivity to inhibitors. Mol Cancer Ther 15:323–333CrossRefGoogle Scholar
  6. 6.
    Bapiro TE, Frese KK, Courtin A, Bramhall JL, Madhu B, Cook N et al (2014) Gemcitabine diphosphate choline is a major metabolite linked to the Kennedy pathway in pancreatic cancer models in vivo. Br J Cancer 111:318–325CrossRefGoogle Scholar
  7. 7.
    Abrego J, Gunda V, Vernucci E, Shukla SK, King RJ, Dasgupta A et al (2017) GOT1-mediated anaplerotic glutamine metabolism regulates chronic acidosis stress in pancreatic cancer cells. Cancer Lett 400:37–46CrossRefGoogle Scholar
  8. 8.
    Vasseur S, Tomasini R, Tournaire R, Iovanna JL (2010) Hypoxia induced tumor metabolic switch contributes to pancreatic cancer aggressiveness. Cancers 2:2138–2152CrossRefGoogle Scholar
  9. 9.
    Sherman MH, Yu RT, Tseng TW, Sousa CM, Liu S, Truitt ML et al (2017) Stromal cues regulate the pancreatic cancer epigenome and metabolome. Proc Natl Acad Sci U S A 114:1129–1134CrossRefGoogle Scholar
  10. 10.
    Wu M, Neilson A, Swift AL, Moran R, Tamagnine J, Parslow D et al (2007) Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am J Physiol Cell Physiol 292:C125–C136CrossRefGoogle Scholar
  11. 11.
    Chini CC, Guerrico AM, Nin V, Camacho-Pereira J, Escande C, Barbosa MT et al (2014) Targeting of NAD metabolism in pancreatic cancer cells: potential novel therapy for pancreatic tumors. Clin Cancer Res 20:120–130CrossRefGoogle Scholar
  12. 12.
    Wu D, Yotnda P (2011) Production and detection of reactive oxygen species (ROS) in cancers. J Vis Exp: JoVEGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Aneesha Dasgupta
    • 1
  • Surendra K. Shukla
    • 2
  • Venugopal Gunda
    • 2
  • Ryan J. King
    • 2
  • Pankaj K. Singh
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.The Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmahaUSA
  3. 3.Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaUSA
  4. 4.Department of Genetics, Cell Biology and AnatomyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations