Characterization of Somatically-Acquired Copy Number Alterations in Chronic Lymphocytic Leukaemia Using Shallow Whole Genome Sequencing

  • Helen Parker
  • Louise Carr
  • Sharma Syeda
  • Dean Bryant
  • Jonathan C. StreffordEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1881)


Shallow whole genome sequencing (sWGS) is a simple, robust, and cost-effective technique recently optimized for the identification of copy number aberrations (CNAs) in tumor samples. This multiplexed methodology sequences 50 bp from one end of the DNA molecule, generating ˜0.1× coverage, and utilizes the observed sequence depth across the genome to infer copy number. It is amenable to low quantities of input DNA, sequencing costs are modest, processing is compatible with low-output instruments, and downstream analysis is simplified by the use of freely available bioinformatics tools and a data analysis package written especially for the analysis of sWGS data. It is the aim of this chapter to introduce the fundamental concepts of sWGS and to provide an overview of the steps involved in a successful sWGS experiment.

Key words

Copy number alterations Chromosomal imbalances Shallow whole genome sequencing Next-generation sequencing Bioinformatics QDNAseq 



H.P., L.C., S.S., D.B., and J.C.S. wrote and reviewed the manuscript. This work was funded by Bloodwise (11052, 12036), the Kay Kendall Leukaemia Fund (873) and Cancer Research UK (C34999/A18087, ECMC C24563/A15581).


  1. 1.
    Gahrton G, Robèrt KH, Friberg K, Zech L, Bird AG (1980) Extra chromosome 12 in chronic lymphocytic leukaemia. Lancet 2(8160):146–147CrossRefGoogle Scholar
  2. 2.
    Fitchett M, Griffiths MJ, Oscier DG, Johnson S, Seabright M (1987) Chromosome abnormalities involving band 13q14 in hematologic malignancies. Cancer Genet Cytogenet 24(1):143–150CrossRefGoogle Scholar
  3. 3.
    Döhner H, Fischer K, Bentz M et al (1995) p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 85(6):1580–1589PubMedGoogle Scholar
  4. 4.
    Bastard C, Raux G, Fruchart C et al (2007) Comparison of a quantitative PCR method with FISH for the assessment of the four aneuploidies commonly evaluated in CLL patients. Leukemia 21(7):1460–1463CrossRefGoogle Scholar
  5. 5.
    Coll-Mulet L, Santidrián AF, Cosialls AM et al (2008) Multiplex ligation-dependent probe amplification for detection of genomic alterations in chronic lymphocytic leukaemia. Br J Haematol 142(5):793–801CrossRefGoogle Scholar
  6. 6.
    Buijs A, Krijtenburg PJ, Meijer E (2006) Detection of risk-identifying chromosomal abnormalities and genomic profiling by multiplex ligation-dependent probe amplification in chronic lymphocytic leukemia. Haematologica 91(10):1434–1435PubMedGoogle Scholar
  7. 7.
    Fabris S, Scarciolla O, Morabito F et al (2011) Multiplex ligation-dependent probe amplification and fluorescence in situ hybridization to detect chromosomal abnormalities in chronic lymphocytic leukemia: a comparative study. Genes Chromosomes Cancer 50(9):726–734CrossRefGoogle Scholar
  8. 8.
    Kallioniemi A, Kallioniemi O-P, Sudar D et al (1992) Comparative genomic hybridisation for molecular genetic analysis of solid tumours. Science 258(5083):818–821CrossRefGoogle Scholar
  9. 9.
    Pinkel D, Segraves R, Sudar D et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20(2):207–211CrossRefGoogle Scholar
  10. 10.
    Thompson PA, O'Brien SM, Wierda WG et al (2015) Complex karyotype is a stronger predictor than del(17p) for an inferior outcome in relapsed or refractory chronic lymphocytic leukemia patients treated with ibrutinib-based regimens. Cancer 121(20):3612–3621CrossRefGoogle Scholar
  11. 11.
    Gaidano G, Ballerini P, Gong JZ et al (1991) p53 mutations in human lymphoid malignancies: association with Burkitt lymphoma and chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 88(12):5413–5417CrossRefGoogle Scholar
  12. 12.
    Stankovic T, Weber P, Stewart G et al (1999) Inactivation of ataxia telangiectasia mutated gene in B-cell chronic lymphocytic leukaemia. Lancet 353(9146):26–29CrossRefGoogle Scholar
  13. 13.
    Bentley DR, Balasubramanian S, Swerdlow HP et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59CrossRefGoogle Scholar
  14. 14.
    Teo SM, Pawitan Y, Ku CS, Chia KS, Salim A (2012) Statistical challenges associated with detecting copy number variations with next-generation sequencing. Bioinformatics 28(21):2711–2718CrossRefGoogle Scholar
  15. 15.
    Li R, Zhu H, Ruan J et al (2012) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20(2):265–272CrossRefGoogle Scholar
  16. 16.
    Scheinin I, Sie D, Bengtsson H et al (2014) DNA copy number analysis of fresh and formalin-fixed specimens by shallow whole-genome sequencing with identification and exclusion of problematic regions in the genome assembly. Genome Res 24(12):2022–2032CrossRefGoogle Scholar
  17. 17.
    Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotech 29:24–26CrossRefGoogle Scholar
  18. 18.
    van Dongen JJ, Langerak AW, Brüggemann M et al (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17(12):2257–2317CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Helen Parker
    • 1
  • Louise Carr
    • 1
  • Sharma Syeda
    • 1
  • Dean Bryant
    • 1
  • Jonathan C. Strefford
    • 1
    • 2
    Email author
  1. 1.Cancer Genomics, Academic Unit of Cancer Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
  2. 2.Southampton General HospitalSouthamptonUK

Personalised recommendations