Skip to main content

Reconstitution of Molybdoenzymes with Bis-Molybdopterin Guanine Dinucleotide Cofactors

  • Protocol
  • First Online:
Book cover Metalloproteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1876))

Abstract

Molybdoenzymes are ubiquitous and play important roles in all kingdoms of life. The cofactors of these enzymes comprise the metal, molybdenum (Mo), which is bound to a special organic ligand system called molybdopterin (MPT). Additional small ligands are present at the Mo atom, including water, hydroxide, oxo-, sulfido-, or selenido-functionalities, and in some enzymes, amino acid ligand, such as serine, aspartate, cysteine, or selenocysteine that coordinate the cofactor to the peptide chain of the enzyme. The so-called molybdenum cofactor (Moco) is deeply buried within the protein at the end of a narrow funnel, giving access only to the substrate. In 1974, an assay was developed by Nason and coworkers using the pleiotropic Neurospora crassa mutant, nit-1, for the reconstitution of molybdoenzyme activities from crude extracts. These studies have led to the understanding that Moco is the common element in all molybdoenzymes from different organisms. The assay has been further developed since then by using specific molybdenum enzymes as the source of Moco for the reconstitution of diverse purified apo-molybdoenzymes. Alternatively, the molybdenum cofactor can be synthesized in vitro from stable intermediates and subsequently inserted into apo-molybdoenzymes with the assistance of specific Moco-binding chaperones. A general working protocol is described here for the insertion of the bis-molybdopterin guanine dinucleotide cofactor (bis-MGD) into its target molybdoenzyme using the example of Escherichia coli trimethylamine N-oxide (TMAO) reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hille R, Hall J, Basu P (2014) The mononuclear molybdenum enzymes. Chem Rev 114:3963–4038

    Article  CAS  Google Scholar 

  2. Hu Y, Ribbe MW (2013) Biosynthesis of the iron-molybdenum cofactor of nitrogenase. J Biol Chem 288:13173–13177

    Article  CAS  Google Scholar 

  3. Leimkühler S, Iobbi-Nivol C (2016) Bacterial molybdoenzymes: old enzymes for new purposes. FEMS Microbiol Rev 40:1–18

    Article  Google Scholar 

  4. Schwarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactors, enzymes and pathways. Nature 460:839–847

    Article  CAS  Google Scholar 

  5. Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96:2757–2816

    Article  CAS  Google Scholar 

  6. Reschke S, Sigfridsson KG, Kaufmann P et al (2013) Identification of a bis-molybdopterin intermediate in molybdenum cofactor biosynthesis in Escherichia coli. J Biol Chem 288:29736–29745

    Article  CAS  Google Scholar 

  7. Reschke S, Mebs S, Sigfridsson-Clauss KG et al (2017) Protonation and sulfido versus oxo ligation changes at the molybdenum cofactor in xanthine dehydrogenase (XDH) variants studied by X-ray absorption spectroscopy. Inorg Chem 56:2165–2176

    Article  CAS  Google Scholar 

  8. Nason A, Lee K-Y, Pan S-S et al (1974) Evidence for a molybdenum cofactor common to all molybdenum enzymes based on the in vitro assembly of assimilatory NADPH-nitrate reductase using the Neurospora mutant nit-1. J Less Com Met 36:449–459

    Article  CAS  Google Scholar 

  9. Leimkühler S, Wuebbens MM, Rajagopalan KV (2011) The history of the discovery of the molybdenum cofactor and novel aspects of its biosynthesis in bacteria. Coord Chem Rev 255:1129–1144

    Article  Google Scholar 

  10. Johnson JL, Rajagopalan KV (1982) Structural and metabolic relationship between the molybdenum cofactor and urothione. Proc Natl Acad Sci U S A 79:6856–6860

    Article  CAS  Google Scholar 

  11. Schindelin H, Kisker C, Hilton J et al (1996) Crystal structure of DMSO reductase: redox-linked changes in molybdopterin coordination. Science 272:1615–1621

    Article  CAS  Google Scholar 

  12. Chan MK, Mukund S, Kletzin A et al (1995) Structure of a hyperthermophilic tungstopterin enzyme, aldehyde ferredoxin oxidoreductase. Science 267:1463–1469

    Article  CAS  Google Scholar 

  13. Romão MJ, Archer M, Moura I et al (1995) The crystal structure of xanthine oxidase related aldehyde oxidoreductase. Science 270:1170–1176

    Article  Google Scholar 

  14. Rajagopalan KV (1996) Biosynthesis of the molybdenum cofactor. In Escherichia coli and Salmonella. In: Neidhardt FC (ed) Cellular and molecular biology. ASM Press, Washington, DC, pp 674–679

    Google Scholar 

  15. Mendel RR, Leimkühler S (2015) The biosynthesis of the molybdenum cofactors. J Biol Inorg Chem 20:337–347

    Article  CAS  Google Scholar 

  16. Giordano G, Santini CL, Saracino L et al (1987) Involvement of a protein with molybdenum cofactor in the in vitro activation of nitrate reductase from a chlA mutant of Escherichia coli K12. Biochim Biophys Acta 914:220–232

    Article  CAS  Google Scholar 

  17. Pommier J, Mejean V, Giordano G et al (1998) TorD, a cytoplasmic chaperone that interacts with the unfolded trimethylamine N-oxide reductase enzyme (TorA) in Escherichia coli. J Biol Chem 273:16615–16620

    Article  CAS  Google Scholar 

  18. Genest O, Ilbert M, Mejean V et al (2005) TorD, an essential chaperone for TorA molybdoenzyme maturation at high temperature. J Biol Chem 280:15644–15648

    Article  CAS  Google Scholar 

  19. Genest O, Neumann M, Seduk F et al (2008) Dedicated metallochaperone connects apoenzyme and molybdenum cofactor biosynthesis components. J Biol Chem 283:21433–21440

    Article  CAS  Google Scholar 

  20. Genest O, Mejean V, Iobbi-Nivol C (2009) Multiple roles of TorD-like chaperones in the biogenesis of molybdoenzymes. FEMS Microbiol Lett 297:1–9

    Article  CAS  Google Scholar 

  21. Stewart V, MacGregor CH (1982) Nitrate reductase in Escherichia coli K-12: involvement of chlC, chlE, and chlG loci. J Bacteriol 151:788–799

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ilbert M, Mejean V, Giudici-Orticoni MT et al (2003) Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA. J Biol Chem 278:28787–28792

    Article  CAS  Google Scholar 

  23. Lake MW, Temple CA, Rajagopalan KV et al (2000) The crystal structure of the Escherichia coli MobA protein provides insight into molybdopterin guanine dinucleotide biosynthesis. J Biol Chem 275:40211–40217

    Article  CAS  Google Scholar 

  24. Hartmann T, Leimkühler S (2013) The oxygen-tolerant and NAD-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO to formate. FEBS J 280:6083–6096

    Article  CAS  Google Scholar 

  25. Kisker C, Schindelin H, Pacheco A et al (1997) Molecular basis of sulfite oxidase deficiency from the structure of sulfite oxidase. Cell 91:973–983

    Article  CAS  Google Scholar 

  26. Temple CA, Rajagopalan KV (2000) Optimization of expression of human sulfite oxidase and its molybdenum domain. Arch Biochem Biophys 38:281–287

    Article  Google Scholar 

  27. Kessler DL, Rajagopalan KV (1972) Purification and properties of sulfite oxidase from chicken liver. Presence of molybdenum in sulfite oxidase from diverse sources. J Biol Chem 247:6566–6573

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are supported by the Deutsche Forschungsgemeinschaft grants LE1171/6-2 and the Cluster of Excellence “Unicat” Exc314, coordinated by the TU Berlin (to S.L.), and the CNRS and AMU (to C. I.-N.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Leimkühler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kaufmann, P., Iobbi-Nivol, C., Leimkühler, S. (2019). Reconstitution of Molybdoenzymes with Bis-Molybdopterin Guanine Dinucleotide Cofactors. In: Hu, Y. (eds) Metalloproteins. Methods in Molecular Biology, vol 1876. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8864-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8864-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8863-1

  • Online ISBN: 978-1-4939-8864-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics