Skip to main content

Micro-Tom Tomato Grafting for Stolbur-Phytoplasma Transmission: Different Grafting Techniques

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1875))

Abstract

Tomato plant, being a model system in scientific research, is widely used to study plant-phytoplasma interaction. Grafting is the faster and most effective method to obtain infected plants. This chapter describes the greenhouse culture of tomato, cv. Micro-Tom, and different herbaceous grafting techniques for efficient stolbur-phytoplasma transmission.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kimura S, Sinha N (2008) Tomato (Solanum lycopersicum): a model fruit-bearing crop. CSH Protoc 2008(11):pdb-emo105

    PubMed  Google Scholar 

  2. Zorzoli R, Pratta GR, Rodríguez GR, Picardi LA (2007) Advances in biotechnology: tomato as a plant model system. Funct Plant Sci Biotechnol 1(1):146–159

    Google Scholar 

  3. The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  4. Arie T, Takahashi H, Kodama M, Teraoka T (2007) Tomato as a model plant for plant-pathogen interactions. Plant Biotechnol 24(1):135–147

    Article  CAS  Google Scholar 

  5. Scott JW, Harbaugh BK (1989) Micro-tom. A miniature dwarf tomato, vol S-370. FL Agric Exp Sta Circ, Florida, pp 1–6

    Google Scholar 

  6. Shikata M, Ezura H (2016) Micro-tom tomato as an alternative plant model system: mutant collection and efficient transformation. In: Botella JR, Botella MA (eds) Plant signal transduction. Methods in molecular biology, vol 1363. Humana Press, New York

    Google Scholar 

  7. Meissner R, Jacobson Y, Melamed S, Levyatuv S, Shalev G, Ashri A, Elkind Y, Levy A (1997) A new model system for tomato genetics. Plant J 12:1465–1472

    Article  CAS  Google Scholar 

  8. Saito T, Ariizumi T, Okabe Y, Asamizu E, Hiwasa-Tanase K, Fukuda N, Mizoguchi T, Yamazaki Y, Aoki K, Ezura H (2011) TOMATOMA: a novel tomato mutant database distributing micro-tom mutant collections. Plant Cell Physiol 52:283–296

    Article  CAS  Google Scholar 

  9. Ueta R, Abe C, Watanabe T et al (2017) Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9. Sci Rep 7:507

    Article  Google Scholar 

  10. Pan C, Ye L, Qin L et al (2016) CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci Rep 6:24765

    Article  CAS  Google Scholar 

  11. Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166(3):1292–1297

    Article  Google Scholar 

  12. Quaglino F, Zhao Y, Casati P, Bulgari D, Bianco PA, Wei W, Davis RE (2013) “Candidatus Phytoplasma solani”, a novel taxon associated with stolbur and bois noir related diseases of plants. Int J Syst Evol Microbiol 63:2879–2894

    Article  CAS  Google Scholar 

  13. Pracros P, Renaudin J, Eveillard S, Mouras A, Hernould M (2006) Tomato flower abnormalities induced by stolbur phytoplasma infection are associated with changes of expression of floral development genes. Mol Plant-Microbe Interact 19(1):62–68

    Article  CAS  Google Scholar 

  14. Pracros P, Hernould M, Teyssier E, Eveillard S, Renaudin J (2007) Stolbur phytoplasma-infected tomato showed alteration of SlDEF methylation status and deregulation of methyltransferase genes expression. B Insectol 60(2):221–222

    Google Scholar 

  15. Machenaud J, Henri R, Dieuaide-Noubhani M, Pracros P, Renaudin J, Eveillard S (2007) Gene expression and enzymatic activity of invertases and sucrose synthase in Spiroplasma citri or stolbur phytoplasma infected plants. B Insectol 60(2):219–220

    Google Scholar 

  16. Buxa SV, Degola F, Polizzotto R et al (2015) Phytoplasma infection in tomato is associated with re-organization of plasma membrane, ER stacks and actin filaments in sieve elements. Front Plant Sci 6:650

    Article  Google Scholar 

  17. Aryan A, Musetti R, Riedle-Bauer M, Brader G (2016) Phytoplasma transmission by heterologous grafting influences viability of the scion and results in early symptom development in periwinkle rootstock. J Phytopathol 164(9):631–640

    Article  CAS  Google Scholar 

  18. Choi YH, Tapias EC, Kim HK et al (2004) Metabolic discrimination of Catharanthus roseus leaves infected by phytoplasma using 1H-NMR spectroscopy and multivariate data analysis. Plant Physiol 135(4):2398–2410

    Article  CAS  Google Scholar 

  19. Riedle-Bauer M, Sára A, Regner F (2008) Transmission of a stolbur phytoplasma by the Agalliinae leafhopper Anaceratagallia ribauti (Hemiptera, Auchenorrhyncha, Cicadellidae). J Phytopathol 156(11–12):687–690

    Article  Google Scholar 

  20. Motohashi R, Enoki H, Fukazawa C, Kiriiwa Y (2015) Hydroponic culture of ‘micro-tom’ tomato. Bio-Protoc 5(19):e1613

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Buoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Buoso, S., Loschi, A. (2019). Micro-Tom Tomato Grafting for Stolbur-Phytoplasma Transmission: Different Grafting Techniques. In: Musetti, R., Pagliari, L. (eds) Phytoplasmas. Methods in Molecular Biology, vol 1875. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8837-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8837-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8836-5

  • Online ISBN: 978-1-4939-8837-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics