Phytoplasmas pp 239-251 | Cite as

Transcriptomic Analyses of Phytoplasmas

  • Davide Pacifico
  • Simona Abbà
  • Sabrina PalmanoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1875)


Transcriptomic analyses addressed to study phytoplasma gene expression may present few difficulties due to the uncultivable nature of these intracellular, obligate pathogens. While RNA extraction from insect vectors does not imply any particular adaptation of the protocols used in most commercial kits, RNA isolation from phytoplasma-infected plants can be a challenging task, given the high levels of polyphenol contents and accumulation of sucrose and starch in the different plant tissues. Here, we describe two different transcriptomic approaches, one focused on RNA phytoplasma sequencing and the other on phytoplasma quantitative gene expression in relation to pathogen load.

Key words

RNA sequencing Quantitative RT-PCR Gene expression Phytoplasma load Expression index 


  1. 1.
    Gasparich GE (2010) Spiroplasmas and phytoplasmas: microbes associated with plant hosts. Biologicals 38(2):193–203CrossRefGoogle Scholar
  2. 2.
    Kakizawa S, Yoneda Y (2015) The role of genome sequencing in phytoplasma research. Phytopathogen Mollicutes 5(1):19–24CrossRefGoogle Scholar
  3. 3.
    Abbà S, Galetto L, Carle P et al (2014) RNA-Seq profile of flavescence dorée phytoplasma in grapevine. BMC Genomics 15:1088CrossRefGoogle Scholar
  4. 4.
    Siewert C, Luge T, Duduk B et al (2014) Analysis of expressed genes of the bacterium 'Candidatus phytoplasma Mali' highlights key features of virulence and metabolism. PLoS One 9:e94391CrossRefGoogle Scholar
  5. 5.
    Ji X, Gai Y, Lu B et al (2010) Shotgun proteomic analysis of mulberry dwarf phytoplasma. Proteome Sci 8:20CrossRefGoogle Scholar
  6. 6.
    Niu S, Fan G, Deng M et al (2016) Discovery of microRNAs and transcript targets related to witches’ broom disease in Paulownia fortunei by high-throughput sequencing and degradome approach. Mol Gen Genomics 291:181–191CrossRefGoogle Scholar
  7. 7.
    Hren M, Nikolić P, Rotter A et al (2009) “Bois noir” phytoplasma induces significant reprogramming of the leaf transcriptome in the field grown grapevine. BMC Genomics 10:460CrossRefGoogle Scholar
  8. 8.
    Mou H-Q, Lu J, Zhu S-F et al (2013) Transcriptomic analysis of Paulownia infected by Paulownia witches’-broom Phytoplasma. PLoS One 10:e77217CrossRefGoogle Scholar
  9. 9.
    Liu LY, Tseng HI, Lin CP et al (2014) High-throughput transcriptome analysis of the leafy flower transition of Catharanthus roseus induced by peanut Witches’-broom phytoplasma infection. Plant Cell Physiol 55:942–957CrossRefGoogle Scholar
  10. 10.
    Margaria P, Ferrandino A, Caciagli P et al (2014) Metabolic and transcript analysis of the flavonoid pathway in diseased and recovered Nebbiolo and Barbera grapevines (Vitis vinifera L.) following infection by Flavescence doree phytoplasma. Plant Cell Environ 37:2183–2200CrossRefGoogle Scholar
  11. 11.
    Fan G, Xibing Cao X, Niu S et al (2015) Transcriptome, microRNA, and degradome analyses of the gene expression of Paulownia with phytoplasma. BMC Genomics 16:896CrossRefGoogle Scholar
  12. 12.
    Pacifico D, Galetto L, Rashidi M et al (2015) Decreasing global transcript levels over time suggest phytoplasma cells enter stationary phase during plant and insect colonization. Appl Environ Microbiol 81:2591–2602CrossRefGoogle Scholar
  13. 13.
    Berges R, Rott M, Seemüller E (2000) Range of phytoplasma concentrations in various plant hosts as determined by competitive polymerase chain reaction. Phytopathology 90:1145–1152CrossRefGoogle Scholar
  14. 14.
    Constable FE, Gibb KS, Symons RH (2003) Seasonal distribution of phytoplasmas in Australian grapevines. Plant Pathol 52(3):267–276CrossRefGoogle Scholar
  15. 15.
    Lepka P, Stitt M, Moll E, Seemüller E (1999) Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiol Mol Plant Pathol 55:59–68CrossRefGoogle Scholar
  16. 16.
    Rusjan D, Halbwirth H, Stich K et al (2012) Biochemical response of grapevine variety ‘chardonnay’ (Vitis vinifera L.) to infection with grapevine yellows (bois noir). European J Plant Pathol 134:231–237CrossRefGoogle Scholar
  17. 17.
    Prezelj N, Covington E, Roitsch T et al (2016) Metabolic Consequences of Infection of Grapevine (Vitis vinifera L.) cv. "Modra frankinja" with Flavescence Dorée Phytoplasma. Front. Plant Sci 7:711Google Scholar
  18. 18.
    Oshima K, Ishii Y, Kakizawa S et al (2011) Dramatic transcriptional changes in an intracellular parasite enable host switching between plant and insect. PLoS One 6:e23242CrossRefGoogle Scholar
  19. 19.
    Westermann AJ, Gorski SA, Vogel J (2012) Dual RNA-seq of pathogen and host. Nat Rev Microbiol 10:618–630CrossRefGoogle Scholar
  20. 20.
    Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116CrossRefGoogle Scholar
  21. 21.
    Gambino G, Perrone I, Gribaudo I (2008) A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal 19(6):520–525CrossRefGoogle Scholar
  22. 22.
    McMillan M, Pereg L (2014) Evaluation of reference genes for gene expression analysis using quantitative RT-PCR in Azospirillum brasilense. PLoS One 9:e98162CrossRefGoogle Scholar
  23. 23.
    Borges V, Ferreira R, Nunes A et al (2010) Normalization strategies for real-time expression data in Chlamydia trachomatis. J Microbiol Methods 82:256–264CrossRefGoogle Scholar
  24. 24.
    Vandecasteele SJ, Peetermans WE, Merckx R et al (2002) Use of gDNA as internal standard for gene expression in staphylococci in vitro and in vivo. Biochem Biophys Res Commun 291:528–534CrossRefGoogle Scholar
  25. 25.
    Takle GW, Toth IK, Brurberg MB (2007) Evaluation of reference genes for real-time RT-PCR expression studies in the plant pathogen Pectobacterium atrosepticum. BMC Plant Biol 7:50CrossRefGoogle Scholar
  26. 26.
    Toruño TY, Music MS, Simi S et al (2010) Phytoplasma PMU1 exists as linear chromosomal and circular extrachromosomal elements and has enhanced expression in insect vectors compared with plant hosts. Mol Microbiol 77:1406–1415CrossRefGoogle Scholar
  27. 27.
    Marzachí C, Bosco D (2005) Relative quantification of chrysanthemum yellows (16SrI) phytoplasma in its plant and insect host using real-time polymerase chain reaction. Mol Biotechnol 30:117–127CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Davide Pacifico
    • 1
  • Simona Abbà
    • 2
  • Sabrina Palmano
    • 2
    Email author
  1. 1.Institute of Biosciences and Bioresources, CNRPalermoItaly
  2. 2.Institute for Sustainable Plant Protection, CNRTorinoItaly

Personalised recommendations