Using TARGATT™ Technology to Generate Site-Specific Transgenic Mice

Part of the Methods in Molecular Biology book series (MIMB, volume 1874)


The discovery of new gene editing tools in the past several years has moved the transgenic field to a new level. The traditional random transgenesis method by pronuclear microinjection has been largely replaced by targeted or site-specific transgenic technologies without the need of homologous recombination in embryonic stem (ES) cells. In this chapter, I describe detailed protocols of an integrase-based approach, trademarked as “TARGATT™” (target attP), to produce site-specific transgenic mice via pronuclear microinjection, whereby an intact single-copy transgene can be inserted into a predetermined chromosomal locus with high efficiency (up to 40%), and faithfully transmitted through generations. This system allows high-level global transgene expression or tissue-specific expression depending on the promoter used, or inducible expression such as induced by tetracycline or doxycycline. Using this approach, site-specific transgenic mice can be generated as fast as in 3 months. The technique presented here greatly facilitates murine transgenesis and precise structure/function dissection of mammalian gene function and regulation in vivo.

Key words

Pronuclear microinjection PhiC31 integrase TARGATT™ Site-specific transgenic Rosa26 knockin H11 locus attP attB 



The author would like to thank all Applied StemCell, Inc. employees who have contributed to improving the TARGATT™ technologies. Thanks also go to our customers who entrusted us on generating TARGATT™ models for their research.


  1. 1.
    Fogg PCM, Colloms S, Rosser S, Stark M, Smith MCM (2014) New applications for phage integrases. J Mol Biol 426(15):2703–2716CrossRefGoogle Scholar
  2. 2.
    Calos MP (2016) Phage integrases for genome editing. Genome Editing Part of the series. In: Advances in experimental medicine and biology. Springer, New York, pp 81–91 Date: 04 March 2016. Series ISSN 0065-2598Google Scholar
  3. 3.
    Groth AC, Olivares EC, Thyagarajan B, Calos MP (2000) A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A 97:5995–6000CrossRefGoogle Scholar
  4. 4.
    Keravala A, Groth AC, Jarrahian S, Thyagarajan B, Hoyt JJ, Kirby PJ, Calos MP (2006) A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol Gen Genomics 276:135–146CrossRefGoogle Scholar
  5. 5.
    Ma QW, Sheng HQ, Yan JB, Cheng S, Huang Y, Chen-Tsai Y, Ren ZR, Huang SZ, Zeng YT (2006) Identification of pseudo attP sites for phage phiC31 integrase in bovine genome. Biochem Biophys Res Commun 345:984–988CrossRefGoogle Scholar
  6. 6.
    Thorpe HM, Smith MC (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A 95:5505–5510CrossRefGoogle Scholar
  7. 7.
    Olivares EC, Hollis RP, Chalberg TW, Meuse L, Kay MA, Calos MP (2002) Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol 20:1124–1128CrossRefGoogle Scholar
  8. 8.
    Hollis RP, Stoll SM, Sclimenti CR, Lin J, Chen-Tsai Y, Calos MP (2003) Phage integrases for the construction and manipulation of transgenic mammals. Reprod Biol Endocrinol 1:79CrossRefGoogle Scholar
  9. 9.
    Tasic B, Hippenmeyer S, Wang C, Gamboa M, Zong H, Chen-Tsai Y, Luo L (2011) Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc Natl Acad Sci U S A 108:7902–7907CrossRefGoogle Scholar
  10. 10.
    Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71CrossRefGoogle Scholar
  11. 11.
    Hippenmeyer S, Youn YH, Moon HM, Miyamichi K, Zong H, Wynshaw-Boris A, Luo L (2010) Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron 68:695–709CrossRefGoogle Scholar
  12. 12.
    Fan X, Petitt M, Gamboa M Huang M, Dhal S, Druzin ML, Wu JC, Chen-Tsai Y, Nayak NR (2012) Transient, inducible, placenta-specific gene expression in mice. Endocrinology 153:5637–5644CrossRefGoogle Scholar
  13. 13.
    Guenther CA, Tasic B, Luo L, Bedell MA (2014) Kingsley DM (2014) A molecular basis for classic blond hair color in Europeans. Nat Genet 46(7):748–752CrossRefGoogle Scholar
  14. 14.
    Feng D, Dai S, Liu F, Ohtake Y, Zhou Z, Wang H et al (2016) Cre-inducible human CD59 mediates rapid cell ablation after intermedilysin administration. J Clin Invest 126(6):2321–2333CrossRefGoogle Scholar
  15. 15.
    Li K, Wang F, Cao WB, Lv XX, Hua F, Cui B, Zhang XW, Shang S et al (2017) TRIB3 promotes APL progression through stabilization of the oncoprotein PML-RARa ad inhibition of p53-mediated senescence. Cancer Cell 31(5):697–710CrossRefGoogle Scholar
  16. 16.
    Zhu F, Gamboa M, Farruggio AP, Hippenmeyer S, Tasic B, Shule B, Chen-Tsai Y, Calos MP (2014) Dice, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Res 42(5):e34CrossRefGoogle Scholar
  17. 17.
    Ruan J, Li H, Xu K, Wu T, Wei J, Zhou R, Liu Z, Mu Y, Yang S-l, Ouyang H, Chen-Tsai RY, Li K (2015) Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Sci Rep 5:14253CrossRefGoogle Scholar
  18. 18.
    Booze ML, Hansen JM, Vitiello PF (2016) A novel mouse model for the identification of thioredoxin-1 protein interactions. Free Radic Biol Med 99:533–543CrossRefGoogle Scholar
  19. 19.
    Sun N, YunJ LJ, Malide D, Liu C, Rovira L et al (2015) Measuring in vivo mitophage. Mol Cell 60(4):685–696CrossRefGoogle Scholar
  20. 20.
    Devine WP, Wythe JD, George M, Koshiba-Takeuchi K, Bruneau BG (2014) Early patterning and specification of cardiac progenitors in gastrulating mesoderm. elife 3:e03848CrossRefGoogle Scholar
  21. 21.
    Villamizar CA (2014) Characterization of the vascular pathology in the ACTA2 R258C mouse model and cerebrovascular characterization of the ACTA2 null mouse. UT GSBS dissertations and thesis (open acess). Paper 508Google Scholar
  22. 22.
    Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823CrossRefGoogle Scholar
  23. 23.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826CrossRefGoogle Scholar
  24. 24.
    Wang H, Yang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918CrossRefGoogle Scholar
  25. 25.
    Quadros RM, Miura H, Harms DW, Akatuka H, Sato T, Aida T, Redder R, Richardson GP et al (2017) Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol 18:92CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Applied StemCell, Inc.MilpitasUSA

Personalised recommendations