Skip to main content

Microinjection in Zebrafish for Genome Editing and Functional Studies

  • Protocol
  • First Online:
Microinjection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1874))

Abstract

A major strength of zebrafish as a model organism is their rapid, in vitro development. The easy access to embryos compared to mammals, allows larval molecular and cellular composition to be manipulated by microinjection, providing a powerful avenue for biological and translational studies. Here, we describe the essential steps and different applications of microinjection in zebrafish for genome editing and functional studies, along with some experimental tips that are critical for microinjection success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santoriello C, Zon LI (2012) Hooked! Modeling human disease in zebrafish. J Clin Invest 122(7):2337–2343. https://doi.org/10.1172/JCI60434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Van Houcke J, De Groef L, Dekeyster E, Moons L (2015) The zebrafish as a gerontology model in nervous system aging, disease, and repair. Ageing Res Rev 24(Pt B):358–368. https://doi.org/10.1016/j.arr.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  3. White R, Rose K, Zon L (2013) Zebrafish cancer: the state of the art and the path forward. Nat Rev Cancer 13(9):624–636. https://doi.org/10.1038/nrc3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Varshney GK, Sood R, Burgess SM (2015) Understanding and editing the zebrafish genome. Adv Genet 92:1–52. https://doi.org/10.1016/bs.adgen.2015.09.002

    Article  PubMed  Google Scholar 

  5. Jao LE, Maddison L, Chen W, Burgess SM (2008) Using retroviruses as a mutagenesis tool to explore the zebrafish genome. Brief Funct Genomic Proteomic 7(6):427–443. https://doi.org/10.1093/bfgp/eln038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kawakami K (2005) Transposon tools and methods in zebrafish. Dev Dyn 234(2):244–254. https://doi.org/10.1002/dvdy.20516

    Article  CAS  PubMed  Google Scholar 

  7. Nasevicius A, Ekker SC (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat Genet 26(2):216–220. https://doi.org/10.1038/79951

    Article  CAS  PubMed  Google Scholar 

  8. Feldman B, Gates MA, Egan ES, Dougan ST, Rennebeck G, Sirotkin HI, Schier AF, Talbot WS (1998) Zebrafish organizer development and germ-layer formation require nodal-related signals. Nature 395(6698):181–185. https://doi.org/10.1038/26013

    Article  CAS  PubMed  Google Scholar 

  9. Kawakami K, Asakawa K, Hibi M, Itoh M, Muto A, Wada H (2016) Gal4 driver transgenic zebrafish: powerful tools to study developmental biology, organogenesis, and neuroscience. Adv Genet 95:65–87. https://doi.org/10.1016/bs.adgen.2016.04.002

    Article  CAS  PubMed  Google Scholar 

  10. Bhuiyan MS, Ellett F, Murray GL, Kostoulias X, Cerqueira GM, Schulze KE, Mahamad Maifiah MH, Li J, Creek DJ, Lieschke GJ, Peleg AY (2016) Acinetobacter baumannii phenylacetic acid metabolism influences infection outcome through a direct effect on neutrophil chemotaxis. Proc Natl Acad Sci U S A 113(34):9599–9604. https://doi.org/10.1073/pnas.1523116113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bernut A, Herrmann JL, Kissa K, Dubremetz JF, Gaillard JL, Lutfalla G, Kremer L (2014) Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation. Proc Natl Acad Sci U S A 111(10):E943–E952. https://doi.org/10.1073/pnas.1321390111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Corkery DP, Dellaire G, Berman JN (2011) Leukaemia xenotransplantation in zebrafish--chemotherapy response assay in vivo. Br J Haematol 153(6):786–789. https://doi.org/10.1111/j.1365-2141.2011.08661.x

    Article  CAS  PubMed  Google Scholar 

  13. Tang Q, Abdelfattah NS, Blackburn JS, Moore JC, Martinez SA, Moore FE, Lobbardi R, Tenente IM, Ignatius MS, Berman JN, Liwski RS, Houvras Y, Langenau DM (2014) Optimized cell transplantation using adult rag2 mutant zebrafish. Nat Methods 11(8):821–824. https://doi.org/10.1038/nmeth.3031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Carrington B, Varshney GK, Burgess SM, Sood R (2015) CRISPR-STAT: an easy and reliable PCR-based method to evaluate target-specific sgRNA activity. Nucleic Acids Res 43(22):e157. https://doi.org/10.1093/nar/gkv802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lin S, Gaiano N, Culp P, Burns JC, Friedmann T, Yee JK, Hopkins N (1994) Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science 265(5172):666–669

    Article  CAS  PubMed  Google Scholar 

  16. Davidson AE, Balciunas D, Mohn D, Shaffer J, Hermanson S, Sivasubbu S, Cliff MP, Hackett PB, Ekker SC (2003) Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. Dev Biol 263(2):191–202

    Article  CAS  PubMed  Google Scholar 

  17. Kawakami K, Shima A, Kawakami N (2000) Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. Proc Natl Acad Sci U S A 97(21):11403–11408. https://doi.org/10.1073/pnas.97.21.11403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12(10):982–988. https://doi.org/10.1038/nmeth.3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. LaFave MC, Varshney GK, Vemulapalli M, Mullikin JC, Burgess SM (2014) A defined zebrafish line for high-throughput genetics and genomics: NHGRI-1. Genetics 198(1):167–170. https://doi.org/10.1534/genetics.114.166769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Varshney GK, Zhang S, Pei W, Adomako-Ankomah A, Fohtung J, Schaffer K, Carrington B, Maskeri A, Slevin C, Wolfsberg T, Ledin J, Sood R, Burgess SM (2016) CRISPRz: a database of zebrafish validated sgRNAs. Nucleic Acids Res 44(D1):D822–D826. https://doi.org/10.1093/nar/gkv998

    Article  CAS  PubMed  Google Scholar 

  21. Varshney GK, Carrington B, Pei W, Bishop K, Chen Z, Fan C, Xu L, Jones M, LaFave MC, Ledin J, Sood R, Burgess SM (2016) A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish. Nat Protoc 11(12):2357–2375. https://doi.org/10.1038/nprot.2016.141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pei W, Tanaka K, Huang SC, Xu L, Liu B, Sinclair J, Idol J, Varshney GK, Huang H, Lin S, Nussenblatt RB, Mori R, Burgess SM (2016) Extracellular HSP60 triggers tissue regeneration and wound healing by regulating inflammation and cell proliferation. NPJ Regen Med 1. https://doi.org/10.1038/npjregenmed.2016.13

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the National Human Genome Research Institute (ZIAHG200386-05). We thank Dr. Benjamin Feldman from NICHD for technical advice on microinjections; Dr. Gaurav K. Varshney and other members of the Burgess laboratory and NHGRI Zebrafish Core for improving the protocols.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn M. Burgess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pei, W., Burgess, S.M. (2019). Microinjection in Zebrafish for Genome Editing and Functional Studies. In: Liu, C., Du, Y. (eds) Microinjection. Methods in Molecular Biology, vol 1874. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8831-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8831-0_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8830-3

  • Online ISBN: 978-1-4939-8831-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics