Advertisement

A Systematic Analysis Workflow for High-Density Customized Protein Microarrays in Biomarker Screening

  • Rodrigo García-Valiente
  • Jonatan Fernández-García
  • Javier Carabias-Sánchez
  • Alicia Landeira-Viñuela
  • Rafael Góngora
  • María Gonzalez-GonzalezEmail author
  • Manuel Fuentes
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1871)

Abstract

High-density protein microarrays constitute a promising high-throughput platform for the characterization of protein expression patterns, biomarker discovery, and validation. Different types of protein microarrays have been described according to several features (such as content, format, and detection system) presenting advantages and disadvantages which are relevant for the specific application and purposes. Therefore, an experimental design is key for any screening based on protein microarrays assays; in fact, the data analysis strategy is directly related to the experimental design, type of protein microarray and consequently the final outcome, the data and results interpretation, is also directly linked. Here, it is proposed a systematic workflow for biomarker discovery based on tailor-made protein microarrays platforms which obtain comprehensively info for the functional protein characterization in high-throughput format.

Key words

Protein microarray Analysis Proteome Antibodies Fluorescence Proteomics Normalization Biomarker Protein microarray 

Notes

Acknowledgments

We gratefully acknowledge financial support from the Spanish Health Institute Carlos III (ISCIII) for the grants: FIS PI14/01538, FIS PI17/01930, and CB16/12/00400. We also acknowledge Fondos FEDER (EU) and Junta Castilla-León (grant SA198A12-2). Fundación Solórzano FS38/2017. The Proteomics Unit belongs to ProteoRed, PRB3-ISCIII, supported by grant PT17/0019/0023, of the PE I + D + I 2017-2020, funded by ISCIII and FEDER.

References

  1. 1.
    Sierra-Sánchez Á, Garrido-Martín D, Lourido L, González-González M, Díez P, Ruiz-Romero C et al (2017) Screening and validation of novel biomarkers in osteoarticular pathologies by comprehensive combination of protein array technologies. J Proteome Res 16(5):1890–1899CrossRefGoogle Scholar
  2. 2.
    Zyuzin MV, Díez P, Goldsmith M, Carregal-Romero S, Teodosio C, Rejman J et al (2017) Comprehensive and systematic analysis of the immunocompatibility of polyelectrolyte capsules. Bioconjug Chem 28(2):556–564CrossRefGoogle Scholar
  3. 3.
    Díez P, Ibarrola N, Dégano RM, Lécrevisse Q, Rodriguez-Caballero A, Criado I et al (2017) A systematic approach for peptide characterization of B-cell receptor in chronic lymphocytic leukemia cells. Oncotarget 8(26):42836–42846CrossRefGoogle Scholar
  4. 4.
    Merbl Y, Kirschner MW (2011) Protein microarrays for genome-wide posttranslational modification analysis. Wiley Interdiscip Rev Syst Biol Med 3(3):347–356CrossRefGoogle Scholar
  5. 5.
    Dasgupta A (2008) Handbook of drug monitoring methods: therapeutics and drugs of abuse. Humana, Totowa, NJ, pp 1–445Google Scholar
  6. 6.
    Yu X, Schneiderhan-Marra N, Joos TO (2011) Protein microarrays and personalized medicine. Ann Biol Clin (Paris) 69(1):17–29Google Scholar
  7. 7.
    Yu X, Schneiderhan-Marra N, Joos TO (2010) Protein microarrays for personalized medicine. Clin Chem 56:376–387CrossRefGoogle Scholar
  8. 8.
    Díez P, Dasilva N, González-González M, Matarraz S, Casado-Vela J, Orfao A et al (2012) Data analysis strategies for protein microarrays. Microarrays 1(3):64–83 http://www.mdpi.com/2076-3905/1/2/64/CrossRefGoogle Scholar
  9. 9.
    Gonzalez-Gonzalez M, Jara-Acevedo R, Matarraz S, Jara-Acevedo M, Paradinas S, Sayagües JM et al (2012) Nanotechniques in proteomics: protein microarrays and novel detection platforms. Eur J Pharm Sci 45:499–506CrossRefGoogle Scholar
  10. 10.
    Dasilva N, Díez P, Matarraz S, González-González M, Paradinas S, Orfao A et al (2012) Biomarker discovery by novel sensors based on nanoproteomics approaches. Sensors 12:2284–2308CrossRefGoogle Scholar
  11. 11.
    Matarraz S, González-González M, Jara M, Orfao A, Fuentes M (2011) New technologies in cancer. Protein microarrays for biomarker discovery. Clin Transl Oncol 13:156–161CrossRefGoogle Scholar
  12. 12.
    Ellington AA, Kullo IJ, Bailey KR, Klee GG (2010) Antibody-based protein multiplex platforms: technical and operational challenges. Clin Chem 56:186–193CrossRefGoogle Scholar
  13. 13.
    Fuentes M, Díez P, Casado-Vela J (2016) Nanotechnology in the fabrication of protein microarrays. Methods Mol Biol 1368:197–208CrossRefGoogle Scholar
  14. 14.
    Glökler J, Angenendt P (2003) Protein and antibody microarray technology. J Chromatogr B Anal Technol Biomed Life Sci 797:229–240CrossRefGoogle Scholar
  15. 15.
    Kusnezow W, Jacob A, Walijew A, Diehl F, Hoheisel JD (2003) Antibody microarrays: an evaluation of production parameters. Proteomics 3(3):254–264CrossRefGoogle Scholar
  16. 16.
    Casado-Vela J, González-González M, Matarraz S, Martínez-Esteso MJ, Vilella M, Sayagués JM et al (2013) Protein arrays: recent achievements and their application to study the human proteome. Curr Proteomics 10(2):83–97. https://doi.org/10.2174/1570164611310020003CrossRefGoogle Scholar
  17. 17.
    Lourido L, Diez P, Dasilva N, Gonzalez-Gonzalez M, Ruiz-Romero C, Blanco F, et al (2014) Protein microarrays: overview, applications and challenges. In: Genomics and proteomics for clinical discovery and development. Springer. p 147–173., https://doi.org/10.1007/978-94-017-9202-8_8Google Scholar
  18. 18.
    LaBaer J, Ramachandran N (2005) Protein microarrays as tools for functional proteomics. Curr Opin Chem Biol 9:14–19CrossRefGoogle Scholar
  19. 19.
    Jara-Acevedo R, Díez P, González-González M, Dégano RM, Ibarrola N, Góngora R et al (2018) Screening phage-display antibody libraries using protein arrays. In: Phage display. Methods Mol Biol 1701:365–380CrossRefGoogle Scholar
  20. 20.
    Spurrier B, Ramalingam S, Nishizuka S (2008) Reverse-phase protein lysate microarrays for cell signaling analysis. Nat Protoc 3(11):1796–1808CrossRefGoogle Scholar
  21. 21.
    He M, Taussig MJ (2001) Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method). Nucleic Acids Res 29(15):E73–E73 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11470888CrossRefGoogle Scholar
  22. 22.
    He M, Stoevesandt O, Palmer EA, Khan F, Ericsson O, Taussig MJ (2008) Printing protein arrays from DNA arrays. Nat Methods 5(2):175–177CrossRefGoogle Scholar
  23. 23.
    Tao SC, Zhu H (2006) Protein chip fabrication by capture of nascent polypeptides. Nat Biotechnol 24(10):1253–1254CrossRefGoogle Scholar
  24. 24.
    Ramachandran N, Raphael JV, Hainsworth E, Demirkan G, Fuentes MG, Rolfs A et al (2008) Next-generation high-density self-assembling functional protein arrays. Nat Methods 5(6):535–538CrossRefGoogle Scholar
  25. 25.
    Hicks SC, Irizarry RA (2014) When to use quantile normalization? bioRxiv. doi: https://doi.org/10.1101/012203. http://biorxiv.org/content/early/2014/12/04/012203.abstract

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rodrigo García-Valiente
    • 1
  • Jonatan Fernández-García
    • 1
  • Javier Carabias-Sánchez
    • 1
  • Alicia Landeira-Viñuela
    • 1
    • 2
  • Rafael Góngora
    • 1
    • 2
  • María Gonzalez-Gonzalez
    • 1
    • 2
    Email author
  • Manuel Fuentes
    • 1
    • 2
  1. 1.Proteomics UnitCancer Research Centre (IBMCC/CSIC/USAL/IBSAL)SalamancaSpain
  2. 2.Department of Medicine and Cytometry General Service-NUCLEUSCancer Research Centre (IBMCC/CSIC/USAL/IBSAL)SalamancaSpain

Personalised recommendations