Skip to main content

Fractionation Techniques to Increase Plant Proteome Coverage: Combining Separation in Parallel at the Protein and the Peptide Level

Part of the Methods in Molecular Biology book series (MIMB,volume 1871)


Peptide spectral libraries enable targeted identification and quantitation of low-abundance proteins in a complex plant proteome. Here we describe parallel protein and peptide fractionation techniques to improve plant proteome coverage and facilitate construction of spectral libraries.

Key words

  • Plant proteomics
  • Protein fractionation
  • Peptide fractionation
  • C18
  • SCX
  • PEG

This is a preview of subscription content, access via your institution.

Buying options

USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more


  1. Milo R (2013) What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays 35:1050–1055

    CrossRef  CAS  Google Scholar 

  2. Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138:795–806

    CrossRef  CAS  Google Scholar 

  3. Schubert OT, Gillet LC, Collins BC, Navarro P, Rosenberger G, Wolski WE et al (2015) Building high-quality assay libraries for targeted analysis of SWATH MS data. Nat Protoc 10(3):426–441

    CrossRef  CAS  Google Scholar 

  4. Acquadro A, Flavo S, Mila S, Albo AG, Comino C, Moglia A, Lanteri S (2009) Proteomics in globe artichoke: protein extraction and sample complexity reduction by PEG fractionation. Electrophoresis 30(9):1594–1602

    CrossRef  CAS  Google Scholar 

  5. Wang W-Q, Song B-Y, Deng Z-J, Wang Y, Liu S-J, Møller IM, Song S-Q (2015) Proteomic analysis of lettuce seed germination and thermoinhibition by sampling of individual seeds at germination and removal of storage proteins by polyethylene glycol fractionation. Plant Physiol 167(4):1332–1350

    CrossRef  CAS  Google Scholar 

  6. Cerna H, Černý M, Habánová H, Šafářová D, Abushamsiya K, Navrátil M, Brzobohatý B (2017) Proteomics offers insight to the mechanism behind Pisum sativum L. response to Pea seed-borne mosaic virus (PSbMV). J Proteomics 153:78–88

    CrossRef  CAS  Google Scholar 

  7. Baldrianová J, Černý M, Novák J, Jedelský PL, Divíšková E, Brzobohatý B (2015) Arabidopsis proteome responses to the smoke-derived growth regulator karrikin. J Proteomics 120:7–20

    CrossRef  Google Scholar 

  8. Batth TS, Francavilla C, Olsen JV (2014) Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. J Proteome Res 13:6176–6186

    CrossRef  CAS  Google Scholar 

  9. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906

    CrossRef  CAS  Google Scholar 

  10. Mostovenko E, Hassan C, Rattke J, Deelder AM, van Veelen PA, Palmblad M (2013) Comparison of peptide and protein fractionation methods in proteomics. EuPA Open Proteom 1:30–37

    CrossRef  CAS  Google Scholar 

  11. Černý M, Skalák J, Kurková B, Babuliaková E, Brzobohatý BB (2011) Using a commercial method for rubisco immunodepletion in analysis of plant proteome. Chemické listy 105:640–642

    Google Scholar 

  12. Černý M, Jedelský PL, Novák J, Schlosser A, Brzobohatý B (2014) Cytokinin modulates proteomic, transcriptomic and growth responses to temperature shocks in Arabidopsis. Plant Cell Environ 37:1641–1655

    CrossRef  Google Scholar 

  13. Righetti PG, Boschetti E (2016) Global proteome analysis in plants by means of peptide libraries and applications. J Proteomics 143:3–14

    CrossRef  CAS  Google Scholar 

  14. Stevens R, Stevens L, Price N (1983) The stabilities of various thiol compounds used in protein purifications. Biochem Educ 11:70

    CrossRef  CAS  Google Scholar 

  15. Berka M, Luklová M (2017) Limited drying and its effect on peptide recovery rates. In: Polak O et al (eds) MendelNet 2017 Proceedings of 24th International PhD Students Conference. 24th International PhD Students Conference, Brno, November 2017. p 91

    Google Scholar 

  16. Nukarinen E, Tomanov K, Ziba I, Weckwerth W, Bachmair A (2017) Protein sumoylation and phosphorylation intersect in Arabidopsis signaling. Plant J 91:505–517

    CrossRef  CAS  Google Scholar 

Download references


This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic under the project CEITEC 2020 (LQ1601) and TE02000177 (TACR), and by Brno PhD Talent 2017 (funded by Brno City Municipality) and IGA grant no. IP 15/2017 to H.H.

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Černý, M., Berka, M., Habánová, H. (2019). Fractionation Techniques to Increase Plant Proteome Coverage: Combining Separation in Parallel at the Protein and the Peptide Level. In: Wang, X., Kuruc, M. (eds) Functional Proteomics. Methods in Molecular Biology, vol 1871. Humana Press, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8813-6

  • Online ISBN: 978-1-4939-8814-3

  • eBook Packages: Springer Protocols