Skip to main content

Targeted Proteomics

  • Protocol
  • First Online:
Book cover Functional Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1871))

Abstract

Targeted proteomics detects proteins of interest with high sensitivity, quantitative accuracy, and reproducibility. In a targeted proteomics assay, surrogate peptides are generated by proteolytic digestion of target proteins and selected reaction monitoring (SRM) assays are developed to quantify these peptides using liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this report, we describe the details of quantitative analysis of target protein in cells and tissue samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yocum AK, Chinnaiyan AM (2009) Current affairs in quantitative targeted proteomics: multiple reaction monitoring–mass spectrometry. Brief Funct Genomics Proteomics 8(2):145–157

    Article  CAS  Google Scholar 

  2. Pan S, Aebersold R, Chen R, Rush J, Goodlett DR, McIntosh MW, Zhang J, Brentnall TA (2008) Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res 8(2):787–797

    Article  Google Scholar 

  3. Parker CE, Pearson TW, Anderson NL, Borchers CH (2010) Mass-spectrometry-based clinical proteomics–a review and prospective. Analyst 135(8):1830–1838

    Article  CAS  Google Scholar 

  4. Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312(5771):212–217

    Article  CAS  Google Scholar 

  5. Marx V (2013) Targeted proteomics. Nat Methods 10(1):19–22

    Article  CAS  Google Scholar 

  6. Doerr A (2010) Targeted proteomics. Nat Methods 7(1):34–34

    Article  CAS  Google Scholar 

  7. Doerr A (2013) Mass spectrometry-based targeted proteomics. Nat Methods 10(1):23–23

    Article  Google Scholar 

  8. Yang T, Xu F, Xu J, Fang D, Yu Y, Chen Y (2013) Comparison of liquid chromatography–tandem mass spectrometry-based targeted proteomics and conventional analytical methods for the determination of P-glycoprotein in human breast cancer cells. J Chromatogr B 936:18–24

    Article  CAS  Google Scholar 

  9. Yang T, Chen F, Xu F, Wang F, Xu Q, Chen Y (2014) A liquid chromatography–tandem mass spectrometry-based targeted proteomics assay for monitoring P-glycoprotein levels in human breast tissue. Clin Chim Acta 436:283–289

    Article  CAS  Google Scholar 

  10. Yu Y, Xu J, Liu Y, Chen Y (2012) Quantification of human serum transferrin using liquid chromatography–tandem mass spectrometry based targeted proteomics. J Chromatogr B 902:10–15

    Article  CAS  Google Scholar 

  11. Yang T, Xu F, Zhao Y, Wang S, Yang M, Chen Y (2014) A liquid chromatography-tandem mass spectrometry-based targeted proteomics approach for the assessment of transferrin receptor levels in breast cancer. Proteom Clin Appl 8(9–10):773–782

    Article  CAS  Google Scholar 

  12. Yang T, Xu F, Fang D, Chen Y (2015) Targeted proteomics enables simultaneous quantification of folate receptor isoforms and potential isoform-based diagnosis in breast cancer. Sci Rep 5:16733

    Article  CAS  Google Scholar 

  13. Yang T, Xu F, Sheng Y, Zhang W, Chen Y (2016) A targeted proteomics approach to the quantitative analysis of ERK/Bcl-2-mediated anti-apoptosis and multi-drug resistance in breast cancer. Anal Bioanal Chem 408(26):7491–7503

    Article  CAS  Google Scholar 

  14. Zhang W, Zhong T, Chen Y (2017) LC-MS/MS-based targeted proteomics quantitatively detects the interaction between p53 and MDM2 in breast cancer. J Proteome 152:172–180

    Article  CAS  Google Scholar 

  15. Xu F, Yang T, Fang D, Xu Q, Chen Y (2014) An investigation of heat shock protein 27 and P-glycoprotein mediated multi-drug resistance in breast cancer using liquid chromatography-tandem mass spectrometry-based targeted proteomics. J Proteome 108:188–197

    Article  CAS  Google Scholar 

  16. Anderson L, Hunter CL (2006) Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 5(4):573–588

    Article  CAS  Google Scholar 

  17. Prakash A, Tomazela DM, Frewen B, MacLean B, Merrihew G, Peterman S, MacCoss MJ (2009) Expediting the development of targeted SRM assays: using data from shotgun proteomics to automate method development. J Proteome Res 8(6):2733–2739

    Article  CAS  Google Scholar 

  18. Picotti P, Aebersold R (2012) Selected reaction monitoring-based proteomics: workflows, potential, pitfalls and future directions. Nat Methods 9(6):555–566

    Article  CAS  Google Scholar 

  19. Gianazza E, Tremoli E, Banfi C (2014) The selected reaction monitoring/multiple reaction monitoring-based mass spectrometry approach for the accurate quantitation of proteins: clinical applications in the cardiovascular diseases. Expert Rev Proteomics 11(6):771–788

    Article  CAS  Google Scholar 

  20. Schmidt C, Urlaub H (2012) Absolute quantification of proteins using standard peptides and multiple reaction monitoring. Methods Mol Biol 893:249–265

    Article  CAS  Google Scholar 

  21. Dillen L, Cools W, Vereyken L, Lorreyne W, Huybrechts T, de Vries R, Ghobarah H, Cuyckens F (2012) Comparison of triple quadrupole and high-resolution TOF-MS for quantification of peptides. Bioanalysis 4(5):565–579

    Article  CAS  Google Scholar 

  22. Mosby I (2006) Mosby's medical dictionary. Mosby

    Google Scholar 

  23. Zolotarjova N, Martosella J, Nicol G, Bailey J, Boyes BE, Barrett WC (2005) Differences among techniques for high-abundant protein depletion. Proteomics 5(13):3304–3313

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, Y., Liu, L. (2019). Targeted Proteomics. In: Wang, X., Kuruc, M. (eds) Functional Proteomics. Methods in Molecular Biology, vol 1871. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8814-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8814-3_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8813-6

  • Online ISBN: 978-1-4939-8814-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics