Skip to main content

Functional Proteomic Analysis to Characterize Signaling Crosstalk

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1871))

Abstract

The biological activities of a cell are determined by its response to external stimuli. The signals are transduced from either intracellular or extracellular milieu through networks of multi-protein complexes and post-translational modifications of proteins (PTMs). Most PTMs including phosphorylation, acetylation, ubiquitination, and SUMOylation, among others, modulate activities of proteins and regulate biological processes such as proliferation, differentiation, as well as host pathogen interaction. Conventionally, reverse genetics analysis and single molecule-based studies were employed to identify and characterize the function of PTMs and enzyme-substrate networks regulated by them. With the advent of high-throughput technologies, it is now possible to identify and quantify thousands of PTM sites in a single experiment. Here, we discuss recent advances in enrichment strategies of various PTMs. We also describe a method for the identification and relative quantitation of proteins using a tandem mass tag labeling approach combined with serial enrichment of phosphorylation, acetylation and succinylation using antibody enrichment strategy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. UniProt C (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(Database issue):D204–D212. https://doi.org/10.1093/nar/gku989

    Article  CAS  Google Scholar 

  2. Creasy DM, Cottrell JS (2004) Unimod: protein modifications for mass spectrometry. Proteomics 4(6):1534–1536. https://doi.org/10.1002/pmic.200300744

    Article  CAS  PubMed  Google Scholar 

  3. Zhang H, Shi X, Pelech S (2016) Monitoring protein kinase expression and phosphorylation in cell lysates with antibody microarrays. Methods Mol Biol 1360:107–122. https://doi.org/10.1007/978-1-4939-3073-9_9

    Article  CAS  PubMed  Google Scholar 

  4. Shi J, Sharif S, Ruijtenbeek R, Pieters RJ (2016) Activity based high-throughput screening for novel O-GlcNAc transferase substrates using a dynamic peptide microarray. PLoS One 11(3):e0151085. https://doi.org/10.1371/journal.pone.0151085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhu B, Farris TR, Milligan SL, Chen H, Zhu R, Hong A, Zhou X, Gao X, McBride JW (2016) Rapid identification of ubiquitination and SUMOylation target sites by microfluidic peptide array. Biochem Biophys Rep 5:430–438. https://doi.org/10.1016/j.bbrep.2016.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  6. Al-Ejeh F, Miranda M, Shi W, Simpson PT, Song S, Vargas AC, Saunus JM, Smart CE, Mariasegaram M, Wiegmans AP, Chenevix-Trench G, Lakhani SR, Khanna KK (2014) Kinome profiling reveals breast cancer heterogeneity and identifies targeted therapeutic opportunities for triple negative breast cancer. Oncotarget 5(10):3145–3158. https://doi.org/10.18632/oncotarget.1865

    Article  PubMed  PubMed Central  Google Scholar 

  7. Scholma J, Fuhler GM, Joore J, Hulsman M, Schivo S, List AF, Reinders MJ, Peppelenbosch MP, Post JN (2016) Improved intra-array and interarray normalization of peptide microarray phosphorylation for phosphorylome and kinome profiling by rational selection of relevant spots. Sci Rep 6:26695. https://doi.org/10.1038/srep26695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baharani A, Trost B, Kusalik A, Napper S (2017) Technological advances for interrogating the human kinome. Biochem Soc Trans 45(1):65–77. https://doi.org/10.1042/BST20160163

    Article  CAS  PubMed  Google Scholar 

  9. Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, Madugundu AK, Kelkar DS, Isserlin R, Jain S, Thomas JK, Muthusamy B, Leal-Rojas P, Kumar P, Sahasrabuddhe NA, Balakrishnan L, Advani J, George B, Renuse S, Selvan LD, Patil AH, Nanjappa V, Radhakrishnan A, Prasad S, Subbannayya T, Raju R, Kumar M, Sreenivasamurthy SK, Marimuthu A, Sathe GJ, Chavan S, Datta KK, Subbannayya Y, Sahu A, Yelamanchi SD, Jayaram S, Rajagopalan P, Sharma J, Murthy KR, Syed N, Goel R, Khan AA, Ahmad S, Dey G, Mudgal K, Chatterjee A, Huang TC, Zhong J, Wu X, Shaw PG, Freed D, Zahari MS, Mukherjee KK, Shankar S, Mahadevan A, Lam H, Mitchell CJ, Shankar SK, Satishchandra P, Schroeder JT, Sirdeshmukh R, Maitra A, Leach SD, Drake CG, Halushka MK, Prasad TS, Hruban RH, Kerr CL, Bader GD, Iacobuzio-Donahue CA, Gowda H, Pandey A (2014) A draft map of the human proteome. Nature 509(7502):575–581. https://doi.org/10.1038/nature13302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wilhelm M, Schlegl J, Hahne H, Gholami AM, Lieberenz M, Savitski MM, Ziegler E, Butzmann L, Gessulat S, Marx H, Mathieson T, Lemeer S, Schnatbaum K, Reimer U, Wenschuh H, Mollenhauer M, Slotta-Huspenina J, Boese JH, Bantscheff M, Gerstmair A, Faerber F, Kuster B (2014) Mass-spectrometry-based draft of the human proteome. Nature 509(7502):582–587. https://doi.org/10.1038/nature13319

    Article  CAS  PubMed  Google Scholar 

  11. Zhao Y, Jensen ON (2009) Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics 9(20):4632–4641. https://doi.org/10.1002/pmic.200900398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sathe G, Pinto SM, Syed N, Nanjappa V, Solanki HS, Renuse S, Chavan S, Khan AA, Patil AH, Nirujogi RS, Nair B, Mathur PP, Prasad TSK, Gowda H, Chatterjee A (2016) Phosphotyrosine profiling of curcumin-induced signaling. Clin Proteomics 13:13. https://doi.org/10.1186/s12014-016-9114-0

    Article  PubMed  PubMed Central  Google Scholar 

  13. Yu Y, Gaillard S, Phillip JM, Huang TC, Pinto SM, Tessarollo NG, Zhang Z, Pandey A, Wirtz D, Ayhan A, Davidson B, Wang TL, Shih Ie M (2015) Inhibition of spleen tyrosine kinase potentiates paclitaxel-induced cytotoxicity in ovarian cancer cells by stabilizing microtubules. Cancer Cell 28(1):82–96. https://doi.org/10.1016/j.ccell.2015.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pinto SM, Nirujogi RS, Rojas PL, Patil AH, Manda SS, Subbannayya Y, Roa JC, Chatterjee A, Prasad TS, Pandey A (2015) Quantitative phosphoproteomic analysis of IL-33-mediated signaling. Proteomics 15(2–3):532–544. https://doi.org/10.1002/pmic.201400303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zahari MS, Wu X, Pinto SM, Nirujogi RS, Kim MS, Fetics B, Philip M, Barnes SR, Godfrey B, Gabrielson E, Nevo E, Pandey A (2015) Phosphoproteomic profiling of tumor tissues identifies HSP27 Ser82 phosphorylation as a robust marker of early ischemia. Sci Rep 5:13660. https://doi.org/10.1038/srep13660

    Article  PubMed  PubMed Central  Google Scholar 

  16. Harsha HC, Pinto SM, Pandey A (2013) Proteomic strategies to characterize signaling pathways. Methods Mol Biol 1007:359–377. https://doi.org/10.1007/978-1-62703-392-3_16

    Article  CAS  PubMed  Google Scholar 

  17. Bao X, Wang Y, Li X, Li XM, Liu Z, Yang T, Wong CF, Zhang J, Hao Q, Li XD (2014) Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. elife 3. https://doi.org/10.7554/eLife.02999

  18. Gu H, Ren JM, Jia X, Levy T, Rikova K, Yang V, Lee KA, Stokes MP, Silva JC (2016) Quantitative profiling of post-translational modifications by immunoaffinity enrichment and LC-MS/MS in cancer serum without immunodepletion. Mol Cell Proteomics 15(2):692–702. https://doi.org/10.1074/mcp.O115.052266

    Article  CAS  PubMed  Google Scholar 

  19. Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166. https://doi.org/10.1126/science.1140321

    Article  CAS  PubMed  Google Scholar 

  20. Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ (2004) Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76(14):3935–3943. https://doi.org/10.1021/ac0498617

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Xu X, Qi D, Deng C, Yang P, Zhang X (2008) Novel Fe3O4@TiO2 core-shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis. J Proteome Res 7(6):2526–2538. https://doi.org/10.1021/pr700582z

    Article  CAS  PubMed  Google Scholar 

  22. Feng S, Ye M, Zhou H, Jiang X, Jiang X, Zou H, Gong B (2007) Immobilized zirconium ion affinity chromatography for specific enrichment of phosphopeptides in phosphoproteome analysis. Mol Cell Proteomics 6(9):1656–1665. https://doi.org/10.1074/mcp.T600071-MCP200

    Article  CAS  PubMed  Google Scholar 

  23. Thingholm TE, Jensen ON (2009) Enrichment and characterization of phosphopeptides by immobilized metal affinity chromatography (IMAC) and mass spectrometry. Methods Mol Biol 527:47–56, xi. https://doi.org/10.1007/978-1-60327-834-8_4

    Article  CAS  PubMed  Google Scholar 

  24. Verma R, Pinto SM, Patil AH, Advani J, Subba P, Kumar M, Sharma J, Dey G, Ravikumar R, Buggi S, Satishchandra P, Sharma K, Suar M, Tripathy SP, Chauhan DS, Gowda H, Pandey A, Gandotra S, Prasad TS (2017) Quantitative proteomic and phosphoproteomic analysis of H37Ra and H37Rv strains of mycobacterium tuberculosis. J Proteome Res 16(4):1632–1645. https://doi.org/10.1021/acs.jproteome.6b00983

    Article  CAS  PubMed  Google Scholar 

  25. Thingholm TE, Jensen ON, Robinson PJ, Larsen MR (2008) SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Mol Cell Proteomics 7(4):661–671. https://doi.org/10.1074/mcp.M700362-MCP200

    Article  CAS  PubMed  Google Scholar 

  26. Bertozzi CR, Kiessling LL (2001) Chemical glycobiology. Science 291(5512):2357–2364

    Article  CAS  Google Scholar 

  27. Vocadlo DJ, Hang HC, Kim EJ, Hanover JA, Bertozzi CR (2003) A chemical approach for identifying O-GlcNAc-modified proteins in cells. Proc Natl Acad Sci U S A 100(16):9116–9121. https://doi.org/10.1073/pnas.1632821100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lanyon-Hogg T, Faronato M, Serwa RA, Tate EW (2017) Dynamic protein acylation: new substrates, mechanisms, and drug targets. Trends Biochem Sci 42(7):566–581. https://doi.org/10.1016/j.tibs.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  29. Morrison E, Kuropka B, Kliche S, Brugger B, Krause E, Freund C (2015) Quantitative analysis of the human T cell palmitome. Sci Rep 5:11598. https://doi.org/10.1038/srep11598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roth AF, Wan J, Bailey AO, Sun B, Kuchar JA, Green WN, Phinney BS, Yates JR 3rd, Davis NG (2006) Global analysis of protein palmitoylation in yeast. Cell 125(5):1003–1013. https://doi.org/10.1016/j.cell.2006.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang Y, Zhang C, Jiang H, Yang P, Lu H (2015) Fishing the PTM proteome with chemical approaches using functional solid phases. Chem Soc Rev 44(22):8260–8287. https://doi.org/10.1039/c4cs00529e

    Article  CAS  PubMed  Google Scholar 

  32. Tate EW (2008) Recent advances in chemical proteomics: exploring the post-translational proteome. J Chem Biol 1(1–4):17–26. https://doi.org/10.1007/s12154-008-0002-6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Webb K, Bennett EJ (2013) Eavesdropping on PTM cross-talk through serial enrichment. Nat Methods 10(7):620–621. https://doi.org/10.1038/nmeth.2526

    Article  CAS  PubMed  Google Scholar 

  34. Swaney DL, Beltrao P, Starita L, Guo A, Rush J, Fields S, Krogan NJ, Villen J (2013) Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10(7):676–682. https://doi.org/10.1038/nmeth.2519

    Article  CAS  PubMed  Google Scholar 

  35. Mertins P, Qiao JW, Patel J, Udeshi ND, Clauser KR, Mani DR, Burgess MW, Gillette MA, Jaffe JD, Carr SA (2013) Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat Methods 10(7):634–637. https://doi.org/10.1038/nmeth.2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim MS, Zhong J, Kandasamy K, Delanghe B, Pandey A (2011) Systematic evaluation of alternating CID and ETD fragmentation for phosphorylated peptides. Proteomics 11(12):2568–2572. https://doi.org/10.1002/pmic.201000547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  Google Scholar 

  38. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169. https://doi.org/10.1074/mcp.M400129-MCP200

    Article  CAS  Google Scholar 

  39. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904

    Article  CAS  Google Scholar 

  40. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473(7347):337–342. https://doi.org/10.1038/nature10098

    Article  CAS  PubMed  Google Scholar 

  41. Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L, Washburn MP (2006) Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. J Proteome Res 5(9):2339–2347. https://doi.org/10.1021/pr060161n

    Article  CAS  PubMed  Google Scholar 

  42. Keller A, Bader SL, Kusebauch U, Shteynberg D, Hood L, Moritz RL (2016) Opening a SWATH window on posttranslational modifications: automated pursuit of modified peptides. Mol Cell Proteomics 15(3):1151–1163. https://doi.org/10.1074/mcp.M115.054478

    Article  CAS  PubMed  Google Scholar 

  43. Lu P, Vogel C, Wang R, Yao X, Marcotte EM (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol 25(1):117–124. https://doi.org/10.1038/nbt1270

    Article  CAS  PubMed  Google Scholar 

  44. Taus T, Kocher T, Pichler P, Paschke C, Schmidt A, Henrich C, Mechtler K (2011) Universal and confident phosphorylation site localization using phosphoRS. J Proteome Res 10(12):5354–5362. https://doi.org/10.1021/pr200611n

    Article  CAS  PubMed  Google Scholar 

  45. Beausoleil SA, Villen J, Gerber SA, Rush J, Gygi SP (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24(10):1285–1292. https://doi.org/10.1038/nbt1240

    Article  CAS  PubMed  Google Scholar 

  46. Peng X, Xu F, Liu S, Li S, Huang Q, Chang L, Wang L, Ma X, He F, Xu P (2017) Identification of missing proteins in the phosphoproteome of kidney cancer. J Proteome Res 16(12):4364–4373. https://doi.org/10.1021/acs.jproteome.7b00332

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y (2011) Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol 7(1):58–63. https://doi.org/10.1038/nchembio.495

    Article  CAS  PubMed  Google Scholar 

  48. Weinert BT, Scholz C, Wagner SA, Iesmantavicius V, Su D, Daniel JA, Choudhary C (2013) Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 4(4):842–851. https://doi.org/10.1016/j.celrep.2013.07.024

    Article  CAS  PubMed  Google Scholar 

  49. Xie Z, Dai J, Dai L, Tan M, Cheng Z, Wu Y, Boeke JD, Zhao Y (2012) Lysine succinylation and lysine malonylation in histones. Mol Cell Proteomics 11(5):100–107. https://doi.org/10.1074/mcp.M111.015875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Drazic A, Myklebust LM, Ree R, Arnesen T (2016) The world of protein acetylation. Biochim Biophys Acta 1864(10):1372–1401. https://doi.org/10.1016/j.bbapap.2016.06.007

    Article  CAS  PubMed  Google Scholar 

  51. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y (2006) Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 23(4):607–618. https://doi.org/10.1016/j.molcel.2006.06.026

    Article  CAS  PubMed  Google Scholar 

  52. Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu CF, Grishin NV, Zhao Y (2009) Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics 8(2):215–225. https://doi.org/10.1074/mcp.M800187-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Henriksen P, Wagner SA, Weinert BT, Sharma S, Bacinskaja G, Rehman M, Juffer AH, Walther TC, Lisby M, Choudhary C (2012) Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol Cell Proteomics 11(11):1510–1522. https://doi.org/10.1074/mcp.M112.017251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lundby A, Lage K, Weinert BT, Bekker-Jensen DB, Secher A, Skovgaard T, Kelstrup CD, Dmytriyev A, Choudhary C, Lundby C, Olsen JV (2012) Proteomic analysis of lysine acetylation sites in rat tissues reveals organ specificity and subcellular patterns. Cell Rep 2(2):419–431. https://doi.org/10.1016/j.celrep.2012.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xie C, Shen H, Zhang H, Yan J, Liu Y, Yao F, Wang X, Cheng Z, Tang TS, Guo C (2017) Quantitative proteomics analysis reveals alterations of lysine acetylation in mouse testis in response to heat shock and X-ray exposure. Biochim Biophys Acta 1866:464. https://doi.org/10.1016/j.bbapap.2017.11.011

    Article  CAS  Google Scholar 

  56. Meyer JG, D'Souza AK, Sorensen DJ, Rardin MJ, Wolfe AJ, Gibson BW, Schilling B (2016) Quantification of lysine acetylation and Succinylation stoichiometry in proteins using mass spectrometric data-independent acquisitions (SWATH). J Am Soc Mass Spectrom 27(11):1758–1771. https://doi.org/10.1007/s13361-016-1476-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695(1–3):55–72. https://doi.org/10.1016/j.bbamcr.2004.09.019

    Article  CAS  PubMed  Google Scholar 

  58. Wu Q, Cheng Z, Zhu J, Xu W, Peng X, Chen C, Li W, Wang F, Cao L, Yi X, Wu Z, Li J, Fan P (2015) Suberoylanilide hydroxamic acid treatment reveals crosstalks among proteome, ubiquitylome and acetylome in non-small cell lung cancer A549 cell line. Sci Rep 5:9520. https://doi.org/10.1038/srep09520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Iesmantavicius V, Weinert BT, Choudhary C (2014) Convergence of ubiquitylation and phosphorylation signaling in rapamycin-treated yeast cells. Mol Cell Proteomics 13(8):1979–1992. https://doi.org/10.1074/mcp.O113.035683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yang X, Liu F, Yan Y, Zhou T, Guo Y, Sun G, Zhou Z, Zhang W, Guo X, Sha J (2015) Proteomic analysis of N-glycosylation of human seminal plasma. Proteomics 15(7):1255–1258. https://doi.org/10.1002/pmic.201400203

    Article  CAS  PubMed  Google Scholar 

  61. Sudhir PR, Chen CH, Pavana Kumari M, Wang MJ, Tsou CC, Sung TY, Chen JY, Chen CH (2012) Label-free quantitative proteomics and N-glycoproteomics analysis of KRAS-activated human bronchial epithelial cells. Mol Cell Proteomics 11(10):901–915. https://doi.org/10.1074/mcp.M112.020875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen W, Smeekens JM, Wu R (2014) A universal chemical enrichment method for mapping the yeast N-glycoproteome by mass spectrometry (MS). Mol Cell Proteomics 13(6):1563–1572. https://doi.org/10.1074/mcp.M113.036251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guan X, Fierke CA (2011) Understanding protein palmitoylation: biological significance and enzymology. Sci China Chem 54(12):1888–1897. https://doi.org/10.1007/s11426-011-4428-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martin BR (2013) Nonradioactive analysis of dynamic protein palmitoylation. Curr Protoc Protein Sci 73(Unit 14):15. https://doi.org/10.1002/0471140864.ps1415s73

    Article  PubMed  Google Scholar 

  65. Martin BR, Wang C, Adibekian A, Tully SE, Cravatt BF (2011) Global profiling of dynamic protein palmitoylation. Nat Methods 9(1):84–89. https://doi.org/10.1038/nmeth.1769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43(Database issue):D512–D520. https://doi.org/10.1093/nar/gku1267

    Article  CAS  PubMed  Google Scholar 

  67. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A (2009) Human protein reference database—2009 update. Nucleic Acids Res 37(Database):D767–D772. https://doi.org/10.1093/nar/gkn892

    Article  CAS  PubMed  Google Scholar 

  68. Huang KY, Su MG, Kao HJ, Hsieh YC, Jhong JH, Cheng KH, Huang HD, Lee TY (2016) dbPTM 2016: 10-year anniversary of a resource for post-translational modification of proteins. Nucleic Acids Res 44(D1):D435–D446. https://doi.org/10.1093/nar/gkv1240

    Article  CAS  PubMed  Google Scholar 

  69. Liu Z, Wang Y, Gao T, Pan Z, Cheng H, Yang Q, Cheng Z, Guo A, Ren J, Xue Y (2014) CPLM: a database of protein lysine modifications. Nucleic Acids Res 42(Database issue):D531–D536. https://doi.org/10.1093/nar/gkt1093

    Article  CAS  PubMed  Google Scholar 

  70. Kennedy JJ, Yan P, Zhao L, Ivey RG, Voytovich UJ, Moore HD, Lin C, Pogosova-Agadjanyan EL, Stirewalt DL, Reding KW, Whiteaker JR, Paulovich AG (2016) Immobilized metal affinity chromatography coupled to multiple reaction monitoring enables reproducible quantification of phospho-signaling. Mol Cell Proteomics 15(2):726–739. https://doi.org/10.1074/mcp.O115.054940

    Article  CAS  PubMed  Google Scholar 

  71. Chick JM, Kolippakkam D, Nusinow DP, Zhai B, Rad R, Huttlin EL, Gygi SP (2015) A mass-tolerant database search identifies a large proportion of unassigned spectra in shotgun proteomics as modified peptides. Nat Biotechnol 33(7):743–749. https://doi.org/10.1038/nbt.3267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Pan Z, Liu Z, Cheng H, Wang Y, Gao T, Ullah S, Ren J, Xue Y (2014) Systematic analysis of the in situ crosstalk of tyrosine modifications reveals no additional natural selection on multiply modified residues. Sci Rep 4:7331. https://doi.org/10.1038/srep07331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Minguez P, Parca L, Diella F, Mende DR, Kumar R, Helmer-Citterich M, Gavin AC, van Noort V, Bork P (2012) Deciphering a global network of functionally associated post-translational modifications. Mol Syst Biol 8:599. https://doi.org/10.1038/msb.2012.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Trinidad JC, Barkan DT, Gulledge BF, Thalhammer A, Sali A, Schoepfer R, Burlingame AL (2012) Global identification and characterization of both O-GlcNAcylation and phosphorylation at the murine synapse. Mol Cell Proteomics 11(8):215–229. https://doi.org/10.1074/mcp.O112.018366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kim MS, Zhong J, Pandey A (2016) Common errors in mass spectrometry-based analysis of post-translational modifications. Proteomics 16(5):700–714. https://doi.org/10.1002/pmic.201500355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hughes CS, Spicer V, Krokhin OV, Morin GB (2017) Investigating acquisition performance on the Orbitrap fusion when using tandem MS/MS/MS scanning with isobaric tags. J Proteome Res 16(5):1839–1846. https://doi.org/10.1021/acs.jproteome.7b00091

    Article  CAS  PubMed  Google Scholar 

  77. Pan J, Chen R, Li C, Li W, Ye Z (2015) Global analysis of protein lysine succinylation profiles and their overlap with lysine acetylation in the marine bacterium vibrio parahemolyticus. J Proteome Res 14(10):4309–4318. https://doi.org/10.1021/acs.jproteome.5b00485

    Article  CAS  PubMed  Google Scholar 

  78. Cheng Y, Hou T, Ping J, Chen G, Chen J (2016) Quantitative succinylome analysis in the liver of non-alcoholic fatty liver disease rat model. Proteome Sci 14:3. https://doi.org/10.1186/s12953-016-0092-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Colak G, Xie Z, Zhu AY, Dai L, Lu Z, Zhang Y, Wan X, Chen Y, Cha YH, Lin H, Zhao Y, Tan M (2013) Identification of lysine succinylation substrates and the succinylation regulatory enzyme CobB in Escherichia coli. Mol Cell Proteomics 12(12):3509–3520. https://doi.org/10.1074/mcp.M113.031567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sun G, Jiang M, Zhou T, Guo Y, Cui Y, Guo X, Sha J (2014) Insights into the lysine acetylproteome of human sperm. J Proteome 109:199–211. https://doi.org/10.1016/j.jprot.2014.07.002

    Article  CAS  Google Scholar 

  81. Xie L, Wang X, Zeng J, Zhou M, Duan X, Li Q, Zhang Z, Luo H, Pang L, Li W, Liao G, Yu X, Li Y, Huang H, Xie J (2015) Proteome-wide lysine acetylation profiling of the human pathogen Mycobacterium tuberculosis. Int J Biochem Cell Biol 59:193–202. https://doi.org/10.1016/j.biocel.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  82. Karg E, Smets M, Ryan J, Forne I, Qin W, Mulholland CB, Kalideris G, Imhof A, Bultmann S, Leonhardt H (2017) Ubiquitome analysis reveals PCNA-associated factor 15 (PAF15) as a specific ubiquitination target of UHRF1 in embryonic stem cells. J Mol Biol 429(24):3814–3824. https://doi.org/10.1016/j.jmb.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  83. Caballero MC, Alonso AM, Deng B, Attias M, de Souza W, Corvi MM (2016) Identification of new palmitoylated proteins in toxoplasma gondii. Biochim Biophys Acta 1864(4):400–408. https://doi.org/10.1016/j.bbapap.2016.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen YJ, Lu CT, Lee TY, Chen YJ (2014) dbGSH: a database of S-glutathionylation. Bioinformatics 30(16):2386–2388. https://doi.org/10.1093/bioinformatics/btu301

    Article  CAS  PubMed  Google Scholar 

  85. Chen YJ, Lu CT, Su MG, Huang KY, Ching WC, Yang HH, Liao YC, Chen YJ, Lee TY (2015) dbSNO 2.0: a resource for exploring structural environment, functional and disease association and regulatory network of protein S-nitrosylation. Nucleic Acids Res 43(Database issue):D503–D511. https://doi.org/10.1093/nar/gku1176

    Article  CAS  PubMed  Google Scholar 

  86. Duan G, Li X, Kohn M (2015) The human DEPhOsphorylation database DEPOD: a 2015 update. Nucleic Acids Res 43(Database issue):D531–D535. https://doi.org/10.1093/nar/gku1009

    Article  CAS  PubMed  Google Scholar 

  87. Maurer-Stroh S, Gouda M, Novatchkova M, Schleiffer A, Schneider G, Sirota FL, Wildpaner M, Hayashi N, Eisenhaber F (2004) MYRbase: analysis of genome-wide glycine myristoylation enlarges the functional spectrum of eukaryotic myristoylated proteins. Genome Biol 5(3):R21. https://doi.org/10.1186/gb-2004-5-3-r21

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gupta R, Birch H, Rapacki K, Brunak S, Hansen JE (1999) O-GLYCBASE version 4.0: a revised database of O-glycosylated proteins. Nucleic Acids Res 27(1):370–372

    Article  CAS  Google Scholar 

  89. Gnad F, Gunawardena J, Mann M (2011) PHOSIDA 2011: the posttranslational modification database. Nucleic Acids Res 39(Database issue):D253–D260. https://doi.org/10.1093/nar/gkq1159

    Article  CAS  PubMed  Google Scholar 

  90. Dinkel H, Chica C, Via A, Gould CM, Jensen LJ, Gibson TJ, Diella F (2011) Phospho.ELM: a database of phosphorylation sites—update 2011. Nucleic Acids Res 39(Database issue):D261–D267. https://doi.org/10.1093/nar/gkq1104

    Article  CAS  PubMed  Google Scholar 

  91. Maurer-Stroh S, Koranda M, Benetka W, Schneider G, Sirota FL, Eisenhaber F (2007) Towards complete sets of farnesylated and geranylgeranylated proteins. PLoS Comput Biol 3(4):e66. https://doi.org/10.1371/journal.pcbi.0030066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Tung CW (2012) PupDB: a database of pupylated proteins. BMC Bioinformatics 13:40. https://doi.org/10.1186/1471-2105-13-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang X, Huang B, Zhang L, Zhang Y, Zhao Y, Guo X, Qiao X, Chen C (2012) SNObase, a database for S-nitrosation modification. Protein Cell 3(12):929–933. https://doi.org/10.1007/s13238-012-2094-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hasan MM, Yang S, Zhou Y, Mollah MN (2016) SuccinSite: a computational tool for the prediction of protein succinylation sites by exploiting the amino acid patterns and properties. Mol BioSyst 12(3):786–795. https://doi.org/10.1039/c5mb00853k

    Article  CAS  PubMed  Google Scholar 

  95. Chernorudskiy AL, Garcia A, Eremin EV, Shorina AS, Kondratieva EV, Gainullin MR (2007) UbiProt: a database of ubiquitylated proteins. BMC Bioinformatics 8:126. https://doi.org/10.1186/1471-2105-8-126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Yenepoya (Deemed to be University) for access to mass spectrometry instrumentation facility. We also thank Karnataka Biotechnology and Information Technology Services (KBITS), Government of Karnataka, for the support to the Center for Systems Biology and Molecular Medicine at Yenepoya University under the Biotechnology Skill Enhancement Programme in Multiomics Technology (BiSEP GO ITD 02 MDA 2017). SMP is a recipient of INSPIRE Faculty Award from Department of Science and Technology (DST), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Keshava Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pinto, S.M., Subbannayya, Y., Prasad, T.S.K. (2019). Functional Proteomic Analysis to Characterize Signaling Crosstalk. In: Wang, X., Kuruc, M. (eds) Functional Proteomics. Methods in Molecular Biology, vol 1871. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8814-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8814-3_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8813-6

  • Online ISBN: 978-1-4939-8814-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics