Skip to main content

Identification of Methylated Transcripts Using the TRIBE Approach

  • Protocol
  • First Online:
Epitranscriptomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1870))

Abstract

m6A is the most abundant internal modification on mRNA. Recent improvements of high-throughput sequencing techniques enables its detection at the transcriptome level, even at the nucleotide resolution. However most current techniques require large amounts of starting material to detect the modification. Here, we describe a complementary technique of standard meRIP-seq/miCLIP-seq approaches to identify methylated RNA using a low amount of material. We believe this approach can be applied in vivo to identify methylated targets in specific tissues or subpopulations of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grosjean H (2015) RNA modification: the Golden Period 1995–2015. RNA 21(4):625–626. https://doi.org/10.1261/rna.049866.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV (2014) Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515(7525):143–146. https://doi.org/10.1038/nature13802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485(7397):201–206. https://doi.org/10.1038/nature11112

    Article  CAS  PubMed  Google Scholar 

  4. Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR (2012) Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149(7):1635–1646. https://doi.org/10.1016/j.cell.2012.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schwartz S, Bernstein DA, Mumbach MR, Jovanovic M, Herbst RH, Leon-Ricardo BX, Engreitz JM, Guttman M, Satija R, Lander ES, Fink G, Regev A (2014) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159(1):148–162. https://doi.org/10.1016/j.cell.2014.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lence T, Akhtar J, Bayer M, Schmid K, Spindler L, Ho CH, Kreim N, Andrade-Navarro MA, Poeck B, Helm M, Roignant JY (2016) m6A modulates neuronal functions and sex determination in Drosophila. Nature 540(7632):242–247. https://doi.org/10.1038/nature20568

    Article  CAS  PubMed  Google Scholar 

  7. Lence T, Soller M, Roignant JY (2017) A fly view on the roles and mechanisms of the m6A mRNA modification and its players. RNA Biol 14:1–9. https://doi.org/10.1080/15476286.2017.1307484

    Article  Google Scholar 

  8. Roignant JY, Soller M (2017) m6A in mRNA: an ancient mechanism for fine-tuning gene expression. Trends Genet 33(6):380–390. https://doi.org/10.1016/j.tig.2017.04.003

    Article  CAS  PubMed  Google Scholar 

  9. Zhao BS, Roundtree IA, He C (2017) Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 18(1):31–42. https://doi.org/10.1038/nrm.2016.132

    Article  CAS  PubMed  Google Scholar 

  10. Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun G, Lu Z, Huang Y, Yang CG, Riggs AD, He C, Shi Y (2017) m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 18(11):2622–2634. https://doi.org/10.1016/j.celrep.2017.02.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jaffrey SR, Kharas MG (2017) Emerging links between m6A and misregulated mRNA methylation in cancer. Genome Med 9(1):2. https://doi.org/10.1186/s13073-016-0395-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kwok CT, Marshall AD, Rasko JE, Wong JJ (2017) Genetic alterations of m6A regulators predict poorer survival in acute myeloid leukemia. J Hematol Oncol 10(1):39. https://doi.org/10.1186/s13045-017-0410-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li Z, Weng H, Su R, Weng X, Zuo Z, Li C, Huang H, Nachtergaele S, Dong L, Hu C, Qin X, Tang L, Wang Y, Hong GM, Huang H, Wang X, Chen P, Gurbuxani S, Arnovitz S, Li Y, Li S, Strong J, Neilly MB, Larson RA, Jiang X, Zhang P, Jin J, He C, Chen J (2017) FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosine RNA demethylase. Cancer Cell 31(1):127–141. https://doi.org/10.1016/j.ccell.2016.11.017

    Article  CAS  PubMed  Google Scholar 

  14. Vu LP, Pickering BF, Cheng Y, Zaccara S, Nguyen D, Minuesa G, Chou T, Chow A, Saletore Y, MacKay M, Schulman J, Famulare C, Patel M, Klimek VM, Garrett-Bakelman FE, Melnick A, Carroll M, Mason CE, Jaffrey SR, Kharas MG (2017) The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med 23(11):1369–1376. https://doi.org/10.1038/nm.4416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang S, Sun C, Li J, Zhang E, Ma Z, Xu W, Li H, Qiu M, Xu Y, Xia W, Xu L, Yin R (2017) Roles of RNA methylation by means of N6-methyladenosine (m6A) in human cancers. Cancer Lett 408:112–120. https://doi.org/10.1016/j.canlet.2017.08.030

    Article  CAS  PubMed  Google Scholar 

  16. Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bogler O, Majumder S, He C, Huang S (2017) m6A Demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell 31(4):591–606 e596. https://doi.org/10.1016/j.ccell.2017.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grozhik AV, Linder B, Olarerin-George AO, Jaffrey SR (2017) Mapping m6A at individual-nucleotide resolution using crosslinking and immunoprecipitation (miCLIP). Methods Mol Biol 1562:55–78. https://doi.org/10.1007/978-1-4939-6807-7_5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Helm M, Motorin Y (2017) Detecting RNA modifications in the epitranscriptome: predict and validate. Nat Rev Genet 18(5):275–291. https://doi.org/10.1038/nrg.2016.169

    Article  CAS  PubMed  Google Scholar 

  19. McMahon AC, Rahman R, Jin H, Shen JL, Fieldsend A, Luo W, Rosbash M (2016) TRIBE: Hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell 165(3):742–753. https://doi.org/10.1016/j.cell.2016.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu W, Rahman R, Rosbash M (2017) Mechanistic implications of enhanced editing by a hyperTRIBE RNA-binding protein. RNA 24:173. https://doi.org/10.1261/rna.064691.117

    Article  CAS  PubMed  Google Scholar 

  21. Barraud P, Allain FH (2012) ADAR proteins: double-stranded RNA and Z-DNA binding domains. Curr Top Microbiol Immunol 353:35–60. https://doi.org/10.1007/82_2011_145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Eggington JM, Greene T, Bass BL (2011) Predicting sites of ADAR editing in double-stranded RNA. Nat Commun 2:319. https://doi.org/10.1038/ncomms1324

    Article  CAS  PubMed  Google Scholar 

  23. Kuttan A, Bass BL (2012) Mechanistic insights into editing-site specificity of ADARs. Proc Natl Acad Sci U S A 109(48):E3295–E3304. https://doi.org/10.1073/pnas.1212548109

    Article  PubMed  PubMed Central  Google Scholar 

  24. Piechotta M, Wyler E, Ohler U, Landthaler M, Dieterich C (2017) JACUSA: site-specific identification of RNA editing events from replicate sequencing data. BMC Bioinformatics 18(1)

    Google Scholar 

  25. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842

    Google Scholar 

  26. Kan L, Grozhik AV, Vedanayagam J, Patil DP, Pang N, Lim KS, Huang YC, Joseph B, Lin CJ, Despic V, Guo J, Yan D, Kondo S, Deng WM, Dedon PC, Jaffrey SR, Lai EC (2017) The m6A pathway facilitates sex determination in Drosophila. Nat Commun 8:15737. https://doi.org/10.1038/ncomms15737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. FLEXBAR—flexible barcode and adapter processing for next-generation sequencing platforms

    Google Scholar 

  28. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360

    Google Scholar 

Download references

Acknowledgments

We thank members of the Dieterich and Roignant labs for their helpful comments and support. JYR was supported by the Deutsche Forschungsgemeinschaft (DFG) RO 4681/5-1, SPP1784 (RO 4681/9-1) and the Epitran COST action (CA16120). CD was supported by the DFG SPP1738 (DI 1501/5-1) and SPP1935 (DI 1501/8-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christoph Dieterich or Jean-Yves Roignant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Worpenberg, L., Jakobi, T., Dieterich, C., Roignant, JY. (2019). Identification of Methylated Transcripts Using the TRIBE Approach. In: Wajapeyee, N., Gupta, R. (eds) Epitranscriptomics. Methods in Molecular Biology, vol 1870. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8808-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8808-2_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8807-5

  • Online ISBN: 978-1-4939-8808-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics