Skip to main content

Characterization of New Cyclic d,l-α-Alternate Amino Acid Peptides by Capillary Electrophoresis Coupled to Electrospray Ionization Mass Spectrometry

  • Protocol
  • First Online:
  • 5495 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1855))

Abstract

The self-assembly of peptide nanotubes (PNTs) depends on the structure and chemistry of cyclic peptide (CP) monomers, impacting on their properties, which makes the choice of their monomers and their characterization a high challenge. For this purpose, we developed for the first time a capillary electrophoresis coupled to electrospray ionization mass spectrometry (CE-ESI-MS) methodology and characterized a set of eight original CP sequences of 8, 10, and 12 d,l-α-alternate amino acids with a controlled internal diameter (from 7 to 13 Å) and various properties (diameter, global surface charge, hydrophobicity). This new CE-ESI-MS methodology allows verifying the structure, the purity, as well as the stability (when stored during several months) of interesting potential precursors for PNTs that could be employed as nanoplatforms in diagnostics or pseudo sieving tools for separation purposes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Brea RJ, Reiriz C, Granja JR (2010) Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes. Chem Soc Rev 39:1448–1456

    Article  CAS  Google Scholar 

  2. Bong DT, Clark TD, Granja JR, Ghadiri MR (2001) Self-assembling organic nanotubes. Angew Chem Int Ed Engl 40:988

    Article  CAS  Google Scholar 

  3. Scanlon S, Aggeli A (2008) Self-assembling peptide nanotubes. Nano Today 3:22–30

    Article  CAS  Google Scholar 

  4. Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36:1263–1269

    Article  CAS  Google Scholar 

  5. Rajagopal K, Schneider JP (2004) Self-assembling peptides and proteins for nanotechnological applications. Curr Opin Struct Biol 14:480–486

    Article  CAS  Google Scholar 

  6. Chapman R, Danial M, Koh ML, Jolliffe KA, Perrier S (2012) Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates. Chem Soc Rev 41:6023–6041

    Article  CAS  Google Scholar 

  7. Chapman R, Jolliffe KA, Perrier S (2010) Synthesis of self-assembling cyclic peptide-polymer conjugates using click chemistry. Aust J Chem 63:1169–1172

    Article  CAS  Google Scholar 

  8. Ghadiri MR, Granja JR, Buehler LK (1994) Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 369:301–304

    Article  CAS  Google Scholar 

  9. Engels M, Bashford D, Ghadiri MR (1995) Structure and dynamics of self-assembling peptide nanotubes and the channel-mediated water organization and self-diffusion. A molecular dynamics study. J Am Chem Soc 117:9151–9158

    Article  CAS  Google Scholar 

  10. Ghadiri MR, Granja JR, Milligan RA, McRee DE, Khazanovich N (1993) Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366:324–327

    Article  CAS  Google Scholar 

  11. Hourani R, Zhang C, van der Weegen R, Ruiz L, Li C, Keten S, Helms BA, Xu T (2011) Processable cyclic peptide nanotubes with tunable interiors. J Am Chem Soc 133:15296–15299

    Article  CAS  Google Scholar 

  12. Khazanovich N, Granja JR, McRee DE, Milligan RA, Ghadiri MR (1994) Nanoscale tubular ensembles with specified internal diameters. Design of a self-assembled nanotube with a 13-.ANG. Pore. J Am Chem Soc 116:6011–6012

    Article  CAS  Google Scholar 

  13. Motesharei K, Ghadiri MR (1997) Diffusion-limited size-selective ion sensing based on SAM-supported peptide nanotubes. J Am Chem Soc 119:11306–11312

    Article  CAS  Google Scholar 

  14. Motiei L, Rahimipour S, Thayer DA, Wong C-H, Ghadiri MR (2009) Antibacterial cyclic D,L-α-glycopeptides. Chem Commun (Camb) 25:3693–3695

    Article  Google Scholar 

  15. AAPPTEC, L. A. a. p. p. t., Practical synthesis guide to solid phase peptide chemistry, www.aapptec.com, pp. 1–76

  16. Chan W, White P (2000) Fmoc solid phase peptide synthesis: a practical approach. Oxford University Press, USA, New York

    Google Scholar 

  17. Amorín M, Castedo L, Granja JR (2003) New cyclic peptide assemblies with hydrophobic cavities: the structural and thermodynamic basis of a new class of peptide nanotubes. J Am Chem Soc 125:2844–2845

    Article  Google Scholar 

  18. Brea RJ, Castedo L, Granja JR (2007) Large-diameter self-assembled dimers of α,γ-cyclic peptides, with the nanotubular solid-state structure of cyclo-[(L-Leu-D-MeN-γ-Acp)4-]·4CHCl2COOH. Chem Commun (Camb) 31:3267–3269

    Article  Google Scholar 

  19. Montenegro J, Ghadiri MR, Granja JR (2013) Ion channel models based on self-assembling cyclic peptide nanotubes. Acc Chem Res 46:2955–2965

    Article  CAS  Google Scholar 

  20. Valéry C, Pouget E, Pandit A, Verbavatz J-M, Bordes L, Boisdé I, Cherif-Cheikh R, Artzner F, Paternostre M (2008) Molecular origin of the self-assembly of lanreotide into nanotubes: a mutational approach. Biophys J 94:1782–1795

    Article  Google Scholar 

  21. Mammadov R, Tekinay AB, Dana A, Guler MO (2012) Microscopic characterization of peptide nanostructures. Micron 43:69–84

    Article  CAS  Google Scholar 

  22. Choi S-j, Jeong W-j, Kang S-K, Lee M, Kim E, Ryu DY, Lim Y-b (2012) Differential self-assembly behaviors of cyclic and linear peptides. Biomacromolecules 13:1991–1995

    Article  CAS  Google Scholar 

  23. Hartgerink JD, Granja JR, Milligan RA, Ghadiri MR (1996) Self-assembling peptide nanotubes. J Am Chem Soc 118:43–50

    Article  CAS  Google Scholar 

  24. Pérez-Alvite M, Mosquera M, Castedo L, Granja J (2011) Toward the rational design of molecular rotors ion sensors based on α, γ-cyclic peptide dimers. Amino Acids 41:621–628

    Article  Google Scholar 

  25. Seebach D, Matthews JL, Meden A, Wessels T, Baerlocher C, McCusker LB (1997) Cyclo-β-peptides: Structure and tubular stacking of cyclic tetramers of 3-aminobutanoic acid as determined from powder diffraction data. Helv Chim Acta 80:173–182

    Article  CAS  Google Scholar 

  26. Sun X, Lorenzi GP (1994) On the stacking of beta rings : the solution self association behavior of two partially N-methylated cyclo (hexaleucines). Helv Chim Acta 77:1520–1526

    Article  CAS  Google Scholar 

  27. Rahmat F, Thamwattana N, Cox BJ (2011) Modelling peptide nanotubes for artificial ion channels. Nanotechnology 22:445707

    Article  Google Scholar 

  28. Jishi RA, Flores RM, Valderrama M, Lou L, Bragin J (1998) Equilibrium geometry and properties of cyclo[(Gly-d-Ala)4] and {Cyclo[(Gly-d-Ala)4]}2 from density functional theory. J Phys Chem A 102:9858–9862

    Article  CAS  Google Scholar 

  29. Lewis JP, Pawley NH, Sankey OF (1997) Theoretical investigation of the cycle peptide system cyclo(D-Ala-Glu-D-Ala-Gln)m=i-4. J Phys Chem B 101:10576–10583

    Article  CAS  Google Scholar 

  30. García-Fandiño R, Granja JR, D'Abramo M, Orozco M (2009) Theoretical characterization of the dynamical behavior and transport properties of alpha,gamma-peptide nanotubes in solution. J Am Chem Soc 131:15678–15686

    Article  Google Scholar 

  31. Hartgerink JD, Clark TD, Ghadiri MR (1998) Peptide nanotubes and beyond. Chemistry 4:1367–1372

    Article  CAS  Google Scholar 

  32. Medina-Casanellas S, Domínguez-Vega E, Benavente F, Sanz-Nebot V, Somsen GW (2014) Low-picomolar analysis of peptides by on-line coupling of fritless solid-phase extraction to sheathless capillary electrophoresis-mass spectrometry. de Jong, G. J. J Chromatogr A 1328:1–6

    Article  CAS  Google Scholar 

  33. Suntornsuk L (2010) Recent advances of capillary electrophoresis in pharmaceutical analysis. Anal Bioanal Chem 398:29–52

    Article  CAS  Google Scholar 

  34. Olivares LA, Nguyen NT, Yonker CR, Smith RD (1987) On-line mass spectrometric detection for capillary zone electrophoresis. Anal Chem 59:1230–1232

    Article  CAS  Google Scholar 

  35. Smith RD, Barinaga CJ, Udseth HR (1988) Improved electrospray ionization interface for capillary zone electrophoresis-mass spectrometry. Anal Chem 60:1948–1952

    Article  CAS  Google Scholar 

  36. Cortez-Diaz MD, d'Orlyé F, Gutierrez-Granados S, de Leon-Rodriguez LM, Varenne A (2016) Design, synthesis, and characterization of new cyclic d,l-α-alternate amino acid peptides by capillary electrophoresis coupled to electrospray ionization mass spectrometry. Anal Biochem 502:8–15

    Article  CAS  Google Scholar 

  37. Jensen PK, Pasa-Tolic L, Peden KK et al (2000) Mass Spectrometric detection for capillary isoelectric focusing separations of complex protein mixtures. Electrophoresis 21:1372–1380

    Article  CAS  Google Scholar 

  38. Minarik M, Foret F, Karger BL (2000) Fraction collection in micropreparative capillary zone electrophoresis and capillary isoelectric focusing. Electrophoresis 21:247–254

    Article  CAS  Google Scholar 

  39. Foret F, Muller O, Thoren J et al (1996) Analysis of protein fractions by micropreparative capillary isoelectric focusing and matrix-assisted laser desorption time-of-flight mass spectrometry. J Chromatogr A 716:157–166

    Article  Google Scholar 

  40. Chartogne A, Gaspari M, Jespersen S et al (2002) On-target fraction collection for the off-line coupling of capillary isoelectric focusing with matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 16:201–207

    Article  CAS  Google Scholar 

  41. Yang L, Lee CS, Hofstadler SA et al (1998) Capillary isoelectric focusing-electrospray ionization fourier transform ion cyclotron resonance mass spectrometry for protein characterization. Anal Chem 70:3235–3241

    Article  CAS  Google Scholar 

  42. Zhang C-X, Xiang F, Pasa-Tolic L et al (2000) Stepwise mobilization of focused proteins in capillary isoelectric focusing mass spectrometry. Anal Chem 72:1462–1468

    Article  CAS  Google Scholar 

  43. Ohnesorge J, Sänger-van de Griend C, Wätzig H (2005) Quantification in capillary electrophoresis-mass spectrometry: Long- and short-term variance components and their compensation using internal standards. Electrophoresis 26:2360–2375

    Article  CAS  Google Scholar 

  44. Geiser L, Rudaz S, Veuthey JL (2003) Validation of capillary electrophoresis-mass spectrometry methods for the analysis of a pharmaceutical formulation. Electrophoresis 24:3049–3056

    Article  CAS  Google Scholar 

  45. Nunez O, Moyano E, Galceran MT (2002) Capillary electrophoresis-mass spectrometry for the analysis of quaternary ammonium herbicides. J Chromatogr A 974:243–255

    Article  CAS  Google Scholar 

  46. Sanz-Nebot V, Benavente F, Balaguer E et al (2003) Capillary electrophoresis coupled to time of flight-mass spectrometry of therapeutic peptide hormones. Electrophoresis 24:883–891

    Article  CAS  Google Scholar 

  47. Nilsson SL, Bylund D, Jörnten-Karlsson M et al (2004) A chemometric study of active parameters and their interaction effects in a nebulized sheath-liquid electrospray interface for capillary electrophoresis-mass spectrometry. Electrophoresis 25:2100–2107

    Article  CAS  Google Scholar 

  48. Mokaddem M, Gareil P, Belgaied JE et al (2008) A new insight into suction and dilution effects in capillary electrophoresis coupled to mass spectrometry via an electrospray ionization interface. Part I-Suction effect. Electrophoresis 29:1957–1964

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Varenne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cortez-Díaz, M.D., d’Orlyé, F., Varenne, A. (2019). Characterization of New Cyclic d,l-α-Alternate Amino Acid Peptides by Capillary Electrophoresis Coupled to Electrospray Ionization Mass Spectrometry. In: Kurien, B., Scofield, R. (eds) Electrophoretic Separation of Proteins. Methods in Molecular Biology, vol 1855. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8793-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8793-1_27

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8792-4

  • Online ISBN: 978-1-4939-8793-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics