Skip to main content

Analysis of Protein Glycation Using Phenylboronate Acrylamide Gel Electrophoresis

  • Protocol
  • First Online:
Book cover Electrophoretic Separation of Proteins

Abstract

Carbohydrate modification of proteins adds complexity and diversity to the proteome. However, undesired carbohydrate modifications also occur in the form of glycation, which have been implicated in diseases such as diabetes, Alzheimer’s disease, autoimmune diseases, and cancer. The analysis of glycated proteins is challenging due to their complexity and variability. Numerous analytical techniques have been developed that require expensive specialized equipment and complex data analysis. In this chapter, we describe two easy-to-use electrophoresis-based methods that will enable researchers to detect, identify, and analyze these posttranslational modifications. This new cost-effective methodology will aid the detection of unwanted glycation products in processed foods and may lead to new diagnostics and therapeutics for age-related chronic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ulrich P, Cerami A (2001) Protein glycation, diabetes, and aging. Recent Prog Horm Res 56:1–22

    Article  CAS  Google Scholar 

  2. Lapolla A, Traldi P, Fedele D (2005) Importance of measuring products of non-enzymatic glycation of proteins. Clin Biochem 38:103–115

    Article  CAS  Google Scholar 

  3. Pokharna H, Pottenger L (1997) Nonenzymatic glycation of cartilage proteoglycans: an in vivo and in vitro study. Glycoconj J 14:917–923

    Article  CAS  Google Scholar 

  4. Geoghegan KF, Dixon HBF, Rosner PJ et al (1999) Spontaneous [alpha]-N-6-Phosphogluconoylation of a “His Tag” in Escherichia coli: the cause of extra mass of 258 or 178 Da in fusion proteins. Anal Biochem 267:169–184

    Article  CAS  Google Scholar 

  5. Yan Z, Caldwell GW, McDonell PA (1999) Identification of a gluconic acid derivative attached to the N-terminus of histidine-tagged proteins expressed in bacteria. Biochem Biophys Res Commun 262:793–800

    Article  CAS  Google Scholar 

  6. Monnier VM, Cerami A (1981) Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science 211:491–493

    Article  CAS  Google Scholar 

  7. Foerster A, Henle T (2003) Glycation in food and metabolic transit of dietary AGEs (advanced glycation end-products): studies on the urinary excretion of pyrraline. Biochem Soc Trans 31:1383–1385

    Article  CAS  Google Scholar 

  8. Montgomery H, Tanaka K, Belgacem O (2010) Glycation pattern of peptides condensed with maltose, lactose and glucose determined by ultraviolet matrix-assisted laser desorption/ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 24:841–848

    Article  CAS  Google Scholar 

  9. Klenk DC, Hermanson GT, Krohn RI et al (1982) Determination of glycosylated hemoglobin by affinity chromatography: comparison with colorimetric and ion-exchange methods, and effects of common interferences. Clin Chem 28:2088–2094

    CAS  PubMed  Google Scholar 

  10. Zhang Q, Ames JM, Smith RD et al (2008) A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: probing the pathogenesis of chronic disease. J Proteome Res 8:754–769

    Article  Google Scholar 

  11. Wu JT, Tu M-C, Zhung P (1996) Advanced glycation end product (AGE): characterization of the products from the reaction between D-glucose and serum albumin. J Clin Lab Anal 10:21–34

    Article  CAS  Google Scholar 

  12. Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244:4406–4412

    CAS  PubMed  Google Scholar 

  13. Pereira Morais MP, Mackay JD, Bhamra SK et al (2009) Analysis of protein glycation using phenylboronate acrylamide gel electrophoresis. Proteomics 10:48–58

    Article  Google Scholar 

  14. Davis BJ, Ornstein L (1959) A new high resolution electrophoresis method. In: Society for the study of blood. New York Academy of Medicine, New York, NY

    Google Scholar 

  15. Raymond S, Weintraub L (1959) Acrylamide gel as a supporting medium for zone electrophoresis. Science 130:711

    Article  CAS  Google Scholar 

  16. Miksík I, Deyl Z (1997) Post-translational non-enzymatic modification of proteins II. Separation of selected protein species after glycation and other carbonyl-mediated modifications. J Chromatogr B Biomed Sci Appl 699:311–345

    Article  Google Scholar 

  17. Garfin DE (2003) Gel electrophoresis of proteins. In: Davey J, Lord M (eds) Essential cell biology: a practical approach. Oxford University Press, Oxford

    Google Scholar 

  18. Switzer RC, Merril CR, Shifrin S (1979) A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem 98:231–237

    Article  CAS  Google Scholar 

  19. Springsteen G, Wang B (2002) A detailed examination of boronic acid-diol complexation. Tetrahedron 58:5291–5300

    Article  CAS  Google Scholar 

  20. Lorand JP, Edwards JO (1959) Polyol complexes and structure of the benzeneboronate ion. J Org Chem 24:769–774

    Article  CAS  Google Scholar 

  21. Nishiyabu R, Kubo Y, James TD et al (2010) Boronic acid building blocks: tools for sensing and separation. Chem Commun 47:1106–1123

    Article  Google Scholar 

  22. Ma WMJ, Pereira Morais MP, D'Hooge F et al (2009) Dye displacement assay for saccharide detection with boronate hydrogels. Chem Commun 5:532–534

    Article  Google Scholar 

  23. Weith HL, Wiebers JL, Gilham PT (1970) Synthesis of cellulose derivatives containing the dihydroxyboryl group and a study of their capacity to form specific complexes with sugars and nucleic acid components. Biochemistry 9:4396–4401

    Article  CAS  Google Scholar 

  24. Liu X-C (2006) Boronic acids as ligands for affinity chromatography. Chin J Chromatogr 24:73–80

    Article  CAS  Google Scholar 

  25. Cartwright SJ, Waley SG (1984) Purification of beta-lactamases by affinity chromatography on phenylboronic acid-agarose. Biochem J 221:505–512

    Article  CAS  Google Scholar 

  26. Armbruster DA (1987) Fructosamine: structure, analysis, and clinical usefulness. Clin Chem 33:2153–2163

    CAS  PubMed  Google Scholar 

  27. Priego Capote F, Sanchez J-C (2009) Strategies for proteomic analysis of non-enzymatically glycated proteins. Mass Spectrom Rev 28:135–146

    Article  Google Scholar 

  28. Jackson TR, Springall JS, Rogalle D et al (2008) Boronate affinity saccharide electrophoresis: a novel carbohydrate analysis tool. Electrophoresis 29:4185–4191

    Article  CAS  Google Scholar 

  29. Jackson P (1990) The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid. Detection of picomolar quantities by an imaging system based on a cooled charge-coupled device. Biochem J 270:705–713

    Article  CAS  Google Scholar 

  30. Mahoney DJ, Aplin RT, Calabro A et al (2001) Novel methods for the preparation and characterization of hyaluronan oligosaccharides of defined length. Glycobiology 11:1025–1033

    Article  CAS  Google Scholar 

  31. Calabro A, Benavides M, Tammi M et al (2000) Microanalysis of enzyme digests of hyaluronan and chondroitin/dermatan sulfate by fluorophore-assisted carbohydrate electrophoresis (FACE). Glycobiology 10:273–281

    Article  CAS  Google Scholar 

  32. Curry S, Mandelkow H, Brick P et al (1998) Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nat Struct Mol Biol 5:827–835

    Article  CAS  Google Scholar 

  33. Sattarahmady N, Moosavi-Movahedi AA, Ahmad F et al (2007) Formation of the molten globule-like state during prolonged glycation of human serum albumin. Biochim Biophys Acta Gen Subj 1770:933–942

    Article  CAS  Google Scholar 

  34. Inaba M, Okuno S, Kumeda Y, et al., and the Osaka CKD Expert Research Group (2007) Glycated albumin is a better glycemic indicator than glycated hemoglobin values in hemodialysis patients with diabetes: effect of anemia and erythropoietin injection, J Am Soc Nephrol 18, 896–903

    Google Scholar 

  35. Burman JD, Leung E, Atkins KL et al (2008) Interaction of human complement with Sbi, a staphylococcal immunoglobulin-binding protein: indications of a novel mechanism of complement evasion by Staphylococcus aureus. J Biol Chem 283:17579–17593

    Article  CAS  Google Scholar 

  36. Pereira Morais MP, Marshall D, Flower SE et al (2013) Analysis of protein glycation using fluorescent phenylboronate gel electrophoresis. Sci Rep 3:1437

    Article  Google Scholar 

  37. Kassaar O, Pereira Morais MP, Xu S et al (2017) Macrophage migration inhibitory factor is subjected to glucose modification and oxidation in Alzheimer’s disease. Sci Rep 7:42874

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Alzheimer’s Research UK (ARUK-PPG2011B-17) and the Dunhill Medical Trust (DMT research grant R320/1113) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean M. H. van den Elsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pereira Morais, M.P., Kassaar, O., Flower, S.E., Williams, R.J., James, T.D., van den Elsen, J.M.H. (2019). Analysis of Protein Glycation Using Phenylboronate Acrylamide Gel Electrophoresis. In: Kurien, B., Scofield, R. (eds) Electrophoretic Separation of Proteins. Methods in Molecular Biology, vol 1855. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8793-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8793-1_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8792-4

  • Online ISBN: 978-1-4939-8793-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics