Skip to main content
Book cover

Xenopus pp 91–103Cite as

A Simple Knock-In System for Xenopus via Microhomology Mediated End Joining Repair

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1865))

Abstract

Following completion of the genome sequences of Xenopus tropicalis and X. laevis, gene targeting techniques have become increasingly important for the further development of Xenopus research in the life sciences. Gene knockout using programmable nucleases, such as TALEN and CRISPR/Cas9, has reached a level whereby we can readily and routinely perform loss-of-function analysis of genes of interest in these species. However, there is still room for improvement in gene knock-in techniques owing to some technical problems. To overcome these problems, several knock-in techniques have been developed. Among them, we introduce in this chapter a simple knock-in system mediated by microhomology mediated end joining repair. This protocol allows us to produce knock-in animals for in vivo tagging, promoter/enhancer traps, and transgenesis in both of these Xenopus species.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS (2010) The genome of the Western clawed frog Xenopus tropicalis. Science (New York, NY) 328(5978):633–636. https://doi.org/10.1126/science.1183670

    Article  CAS  Google Scholar 

  2. Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS (2016) Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538(7625):336–343. https://doi.org/10.1038/nature19840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karpinka JB, Fortriede JD, Burns KA, James-Zorn C, Ponferrada VG, Lee J, Karimi K, Zorn AM, Vize PD (2015) Xenbase, the Xenopus model organism database; new virtualized system, data types and genomes. Nucleic Acids Res 43(Database issue):D756–D763. https://doi.org/10.1093/nar/gku956

    Article  CAS  PubMed  Google Scholar 

  4. Young JJ, Cherone JM, Doyon Y, Ankoudinova I, Faraji FM, Lee AH, Ngo C, Guschin DY, Paschon DE, Miller JC, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Harland RM, Zeitler B (2011) Efficient targeted gene disruption in the soma and germ line of the frog Xenopus tropicalis using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A 108(17):7052–7057. https://doi.org/10.1073/pnas.1102030108

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lei Y, Guo X, Liu Y, Cao Y, Deng Y, Chen X, Cheng CH, Dawid IB, Chen Y, Zhao H (2012) Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A 109(43):17484–17489. https://doi.org/10.1073/pnas.1215421109

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ishibashi S, Cliffe R, Amaya E (2012) Highly efficient bi-allelic mutation rates using TALENs in Xenopus tropicalis. Biology Open 1(12):1273–1276. https://doi.org/10.1242/bio.20123228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Suzuki KT, Isoyama Y, Kashiwagi K, Sakuma T, Ochiai H, Sakamoto N, Furuno N, Kashiwagi A, Yamamoto T (2013) High efficiency TALENs enable F0 functional analysis by targeted gene disruption in Xenopus laevis embryos. Biology Open 2(5):448–452. https://doi.org/10.1242/bio.20133855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nakayama T, Fish MB, Fisher M, Oomen-Hajagos J, Thomsen GH, Grainger RM (2013) Simple and efficient CRISPR/Cas9-mediated targeted mutagenesis in Xenopus tropicalis. Genesis 51(12):835–843. https://doi.org/10.1002/dvg.22720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blitz IL, Biesinger J, Xie X, Cho KW (2013) Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system. Genesis 51(12):827–834. https://doi.org/10.1002/dvg.22719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guo X, Zhang T, Hu Z, Zhang Y, Shi Z, Wang Q, Cui Y, Wang F, Zhao H, Chen Y (2014) Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis. Development 141(3):707–714. https://doi.org/10.1242/dev.099853

    Article  CAS  PubMed  Google Scholar 

  11. Wang F, Shi Z, Cui Y, Guo X, Shi YB, Chen Y (2015) Targeted gene disruption in Xenopus laevis using CRISPR/Cas9. Cell Biosci 5:15. https://doi.org/10.1186/s13578-015-0006-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bhattacharya D, Marfo CA, Li D, Lane M, Khokha MK (2015) CRISPR/Cas9: an inexpensive, efficient loss of function tool to screen human disease genes in Xenopus. Dev Biol 408(2):196–204. https://doi.org/10.1016/j.ydbio.2015.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shigeta M, Sakane Y, Iida M, Suzuki M, Kashiwagi K, Kashiwagi A, Fujii S, Yamamoto T, Suzuki KT (2016) Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders. Genes Cells 21(7):755–771. https://doi.org/10.1111/gtc.12379

    Article  CAS  PubMed  Google Scholar 

  14. Sakane Y, Iida M, Hasebe T, Fujii S, Buchholz DR, Ishizuya-Oka A, Yamamoto T, Suzuki KT (2017) Functional analysis of thyroid hormone receptor beta in Xenopus tropicalis founders using CRISPR-Cas. Biology Open. https://doi.org/10.1242/bio.030338

    Article  Google Scholar 

  15. Ceccaldi R, Rondinelli B, D'Andrea AD (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26(1):52–64. https://doi.org/10.1016/j.tcb.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  16. Shi Z, Wang F, Cui Y, Liu Z, Guo X, Zhang Y, Deng Y, Zhao H, Chen Y (2015) Heritable CRISPR/Cas9-mediated targeted integration in Xenopus tropicalis. FASEB J 29(12):4914–4923. https://doi.org/10.1096/fj.15-273425

    Article  CAS  PubMed  Google Scholar 

  17. Bae S, Kweon J, Kim HS, Kim JS (2014) Microhomology-based choice of Cas9 nuclease target sites. Nat Methods 11(7):705–706. https://doi.org/10.1038/nmeth.3015

    Article  CAS  PubMed  Google Scholar 

  18. Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N, Obara M, Daimon T, Sezutsu H, Yamamoto T, Sakuma T, Suzuki KT (2014) Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun 5:5560. https://doi.org/10.1038/ncomms6560

    Article  CAS  PubMed  Google Scholar 

  19. Hisano Y, Sakuma T, Nakade S, Ohga R, Ota S, Okamoto H, Yamamoto T, Kawahara A (2015) Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish. Sci Rep 5:8841. https://doi.org/10.1038/srep08841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aida T, Nakade S, Sakuma T, Izu Y, Oishi A, Mochida K, Ishikubo H, Usami T, Aizawa H, Yamamoto T, Tanaka K (2016) Gene cassette knock-in in mammalian cells and zygotes by enhanced MMEJ. BMC Genomics 17(1):979. https://doi.org/10.1186/s12864-016-3331-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Suzuki M, Takagi C, Miura S, Sakane Y, Suzuki M, Sakuma T, Sakamoto N, Endo T, Kamei Y, Sato Y, Kimura H, Yamamoto T, Ueno N, Suzuki KT (2016) In vivo tracking of histone H3 lysine 9 acetylation in Xenopus laevis during tail regeneration. Genes Cells 21(4):358–369. https://doi.org/10.1111/gtc.12349

    Article  CAS  PubMed  Google Scholar 

  22. Sakane Y, Suzuki KT, Yamamoto T (2017) A simple protocol for loss-of-function analysis in Xenopus tropicalis founders using the CRISPR-Cas system. Methods Mol Biol 1630:189–203. https://doi.org/10.1007/978-1-4939-7128-2_16

    Article  CAS  PubMed  Google Scholar 

  23. Sakuma T, Ochiai H, Kaneko T, Mashimo T, Tokumasu D, Sakane Y, Suzuki K, Miyamoto T, Sakamoto N, Matsuura S, Yamamoto T (2013) Repeating pattern of non-RVD variations in DNA-binding modules enhances TALEN activity. Sci Rep 3:3379. https://doi.org/10.1038/srep03379

    Article  PubMed  PubMed Central  Google Scholar 

  24. Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics (Oxford, England) 31(7):1120–1123. https://doi.org/10.1093/bioinformatics/btu743

    Article  CAS  Google Scholar 

  25. Nakamae K, Nishimura Y, Takenaga M, Nakade S, Sakamoto N, Ide H, Sakuma T, Yamamoto T (2017) Establishment of expanded and streamlined pipeline of PITCh knock-in - a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO. Bioengineered 8(3):302–308. https://doi.org/10.1080/21655979.2017.1313645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 15 K06802 [Grant-in-Aid for Scientific Research (C)] to K.T.S. and 15 J05833 [Grant-in-Aid for JSPS Fellows] to Y.S, NBRP Fundamental Technologies Upgrading Program in AMED to K.T.S. and T.Y., The Narishige Zoological Science Award and The Naito Foundation to K.T.S. We are grateful to Drs. Akihiko Kashiwagi and Keiko Kashiwagi and the National Bio-Resource Project of X. tropicalis in the Amphibian Research Center (Hiroshima University) for providing X. tropicalis, Golden strain. We also thank Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ich T. Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Suzuki, Ki.T., Sakane, Y., Suzuki, M., Yamamoto, T. (2018). A Simple Knock-In System for Xenopus via Microhomology Mediated End Joining Repair. In: Vleminckx, K. (eds) Xenopus. Methods in Molecular Biology, vol 1865. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8784-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8784-9_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8783-2

  • Online ISBN: 978-1-4939-8784-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics