Skip to main content

Efficient and Fast Production of Transgenic Rice Plants by Agrobacterium-Mediated Transformation

  • Protocol
  • First Online:
Book cover Transgenic Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1864))

Abstract

Genetic transformation plays a key role in deciphering regulation of agronomic traits at molecular level in rice, a model monocot cereal crop. Here we describe an efficient and fast protocol for producing transgenic japonica rice plants using the Agrobacterium-mediated transformation method. The protocol simplifies medium compositions and transformation steps and can be easily followed by a lab technician with little tissue culture experience. Using this protocol, we have transformed thousands of gene constructs in the past 10 years and edited hundreds of genes with the CRISPR-Cas9 system recently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimamoto K, Terada R, Izawa T, Fujimoto H (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338:274–276

    Article  CAS  Google Scholar 

  2. Christou P, Ford T, Kofron M (1991) Production of transgenic rice (Oryza Sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Nat Biotechnol 9:957–962

    Article  Google Scholar 

  3. Dai S, Zheng P, Marmey P, Zhang S, Tian W, Chen S, Beachy RN, Fauquet C (2001) Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol Breed 7:25–33

    Article  CAS  Google Scholar 

  4. Chen L, Marmey P, Taylor NJ, Brizard JP, Espinoza C, D'Cruz P, Huet H, Zhang S, Kochko A, Beachy RN, Fauquet CM (1998) Expression and inheritance of multiple transgenes in rice plants. Nat Biotechnol 16:1060–1064

    Article  CAS  Google Scholar 

  5. Zhu C, Naqvi S, Breitenbach G, Sandmann J, Christou P, Capell T (2008) Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize. Proc Natl Acad Sci U S A 105:18232–18237

    Article  CAS  Google Scholar 

  6. Naqvi S, Zhu C, Farre G, Bassie L, Ramessar K, Breitenbach J, Perez-Conesa D, Ros-Berruezo G, Sandmann G, Capell T, Christou P (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106:7762–7767

    Article  CAS  Google Scholar 

  7. Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu JL, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617. https://doi.org/10.1038/ncomms12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan AK (2016) Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat Commun 7:13274. https://doi.org/10.1038/ncomms13274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261. https://doi.org/10.1038/ncomms14261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rained DM, Bottino P, Gordon MP, Nester EW (1990) Agrobecterium-mediated transformation of rice (Oryza sativa L.). Nat Biotechnol 8:33–38

    Article  Google Scholar 

  11. Chan MT, Chang HH, Ho SL, Tong WF, Yu SM (1993) Agrobacteriummediated production of transgenic rice plants expressing a chimeric ɑ-amylase promoter/β glucuronidase gene. Plant Mol Biol 22:491–506

    Article  CAS  Google Scholar 

  12. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  Google Scholar 

  13. Hiei Y, Komari T (2008) Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat Protoc 3:824–834

    Article  CAS  Google Scholar 

  14. Roy M, Jain RK, Rohila JS, Wu R (2000) Production of agronomically superior transgenic rice plants using Agrobacterium transformation methods: present status and future perspectives. Curr Sci 79:954–960

    CAS  Google Scholar 

  15. Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47:969–976

    Article  CAS  Google Scholar 

  16. Zhou F, Lin Q, Zhu L et al (2013) D14–SCFD3-dependent degradation of D53 regulates strigolactone signaling. Nature 504:406–410

    Article  CAS  Google Scholar 

  17. Gao H, Jin M, Zheng X et al (2014) Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci U S A 46:16337–16342

    Article  Google Scholar 

  18. Liu Y, Wu H, Chen H et al (2015) A gene cluster encoding lectin receptor kinases confers broad-spectrum and durable insect resistance in rice. Nat Biotechnol 33:301–305

    Article  CAS  Google Scholar 

  19. Wu S, Xie Y, Zhang J et al (2015) VLN2 regulates plant architecture by affecting microfilament dynamics and polar auxin transport in rice. Plant Cell 27:2829–2845

    Article  CAS  Google Scholar 

  20. Sun Y, Zhang X, Wu C, He Y, Ma Y, Hou H, Guo X, Du W, Zhao Y, Xia L (2016) Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9:628–631

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Innovation Program of Chinese Academy of Agricultural Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanyin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, C., Sui, Y. (2019). Efficient and Fast Production of Transgenic Rice Plants by Agrobacterium-Mediated Transformation. In: Kumar, S., Barone, P., Smith, M. (eds) Transgenic Plants. Methods in Molecular Biology, vol 1864. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8778-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8778-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8777-1

  • Online ISBN: 978-1-4939-8778-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics