Skip to main content

Genome Size Estimation and Quantitative Cytogenetics in Insects

  • Protocol
  • First Online:
Insect Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1858))

Abstract

With care, it is possible using flow cytometry to create a precise and accurate estimate of the genome size of an insect that is useful for genomics, genetics, molecular/cell biology, or systematics. Genome size estimation is a useful first step in a complete genome sequencing project. The number of sequencing reads required to produce a given level of coverage depends directly upon the 1C amount of DNA per cell, while an even more critical need is an accurate 1C genome size estimate to compare against the final assembly. Here we present a detailed protocol to estimate genome size using flow cytometry. Published genome size estimates should be submitted to genomesize.com so that they are available to all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jacobson AL, Johnston JS, Rotenberg D, Whitfield AE, Booth W, Vargo EL, Kennedy GG (2013) Genome size and ploidy of thysanoptera. Insect Mol Biol 22(1):12–17. https://doi.org/10.1111/j.1365-2583.2012.01165.x

    Article  CAS  PubMed  Google Scholar 

  2. Lower SS, Spencer Johnston J, Stanger-Hall K, Hjelmen CE, Hanrahan SJ, Korunes K, Hall D (2017) Genome size in North American fireflies: substantial variation likely driven by neutral processes. Genome Biol Evol 9(6):1499–1512. https://doi.org/10.1093/gbe/evx097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rangel J, Strauss K, Seedorf K, Hjelmen C, Johnston J (2015) Endopolyploidy changes with age-related polyethism in the honey bee, Apis mellifera. PLoS One 10(4):e0122208. https://doi.org/10.1371/journal.pone.0122208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scholes DR, Suarez AV, Paige KN (2013) Can endopolyploidy explain body size variation within and between castes in ants? Ecol Evol 3(7):2128–2137

    Article  Google Scholar 

  5. Johnston JS, Schoener M, McMahon DP (2013) DNA underreplication in the majority of nuclei in the Drosophila melanogaster thorax: evidence from Suur and flow cytometry. J Mol Biol Res 3(1):47

    Article  Google Scholar 

  6. Bosco G, Campbell P, Leiva-Neto JT, Markow TA (2007) Analysis of Drosophila species genome size and satellite DNA content reveals significant differences among strains as well as between species. Genetics 177(3):1277–1290

    Article  CAS  Google Scholar 

  7. Barcenas N, Thompson N, Gomez-Tovar V, Morales-Ramos J, Johnston J (2008) Sex determination and genome size in Catolaccus grandis (Burks, 1954) (Hymenoptera: Pteromalidae). J Hymenopt Res 17:201–209

    Google Scholar 

  8. Johnston J, Ross L, Beani L, Hughes D, Kathirithamby J (2004) Tiny genomes and endoreduplication in Strepsiptera. Insect Mol Biol 13(6):581–585

    Article  CAS  Google Scholar 

  9. Bachtrog D (2013) Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat Rev Genet 14(2):113–124

    Article  CAS  Google Scholar 

  10. Aron S, de Menten L, Van Bockstaele DR, Blank SM, Roisin Y (2005) When hymenopteran males reinvented diploidy. Curr Biol 15(9):824–827

    Article  CAS  Google Scholar 

  11. Huang W, Massouras A, Inoue Y, Peiffer J, Ramia M, Tarone AM, Turlapati L, Zichner T, Zhu D, Lyman RF, Magwire MM, Blankenburg K, Carbone MA, Chang K, Ellis LL, Fernandez S, Han Y, Highnam G, Hjelmen CE, Jack JR, Javaid M, Jayaseelan J, Kalra D, Lee S, Lewis L, Munidasa M, Ongeri F, Patel S, Perales L, Perez A, Pu L, Rollmann SM, Ruth R, Saada N, Warner C, Williams A, Wu YQ, Yamamoto A, Zhang Y, Zhu Y, Anholt RRH, Korbel JO, Mittelman D, Muzny DM, Gibbs RA, Barbadilla A, Johnston JS, Stone EA, Richards S, Deplancke B, Mackay TFC (2014) Natural variation in genome architecture among 205 Drosophila melanogaster genetic reference panel lines. Genome Res 24(7):1193–1208. https://doi.org/10.1101/gr.171546.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arnqvist G, Sayadi A, Immonen E, Hotzy C, Rankin D, Tuda M, Hjelmen CE, Johnston JS (2015) Genome size correlates with reproductive fitness in seed beetles. Proc R Soc B 282(1815):20151421

    Article  Google Scholar 

  13. Ellis LL, Huang W, Quinn AM, Ahuja A, Alfrejd B, Gomez FE, Hjelmen CE, Moore KL, Mackay TFC, Johnston JS, Tarone AM (2014) Intrapopulation genome size in D. melanogaster reflects life history variation and plasticity. PLoS Genet 10(7):e1004522. https://doi.org/10.1371/journal.pgen.1004522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barre P, Noirot M, Louarn J, Duperray C, Hamon S (1996) Reliable flow cytometric estimation of nuclear DNA content in coffee trees. Cytometry 24(1):32–38

    Article  CAS  Google Scholar 

  15. Desalle R, Gregory TR, Johnston JS (2005) Preparation of samples for comparative studies of arthropod chromosomes: visualization, in situ hybridization, and genome size estimation. Methods Enzymol 395:460–488

    Article  CAS  Google Scholar 

  16. Gregory TR, Nathwani P, Bonnett TR, Huber DP (2013) Sizing up arthropod genomes: an evaluation of the impact of environmental variation on genome size estimates by flow cytometry and the use of qPCR as a method of estimation. Genome 56(9):505–510

    Article  Google Scholar 

  17. Hare EE, Johnston JS (2011) Genome size determination using flow cytometry of propidium iodide-stained nuclei. In: Orgogozo V, Rockman MV (eds) Molecular Methods for Evolutionary Genetics, vol 772. Humana Press, New York, NY, pp 3–12. https://doi.org/10.1007/978-1-61779-228-1_1

    Chapter  Google Scholar 

  18. Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Flow cytometric and microscopic analysis of the effect of tannic acid on plant nuclei and estimation of DNA content. Ann Bot 98(3):515–527

    Article  CAS  Google Scholar 

  19. Šmarda P, Bureš P, Šmerda J, Horová L (2012) Measurements of genomic GC content in plant genomes with flow cytometry: a test for reliability. New Phytol 193(2):513–521

    Article  Google Scholar 

  20. Hanrahan SJ, Johnston JS (2011) New genome size estimates of 134 species of arthropods. Chromosom Res 19:809–823. https://doi.org/10.1007/s10577-011-9231-6

    Article  CAS  Google Scholar 

  21. Bennett MD, Leitch IJ, Price HJ, Johnston JS (2003) Comparisons with Caenorhabditis (∼100 Mb) and Drosophila (∼175 Mb) using flow cytometry show genome size in Arabidopsis to be ∼157 Mb and thus ∼25% larger than the Arabidopsis genome initiative estimate of ∼125 Mb. Ann Bot 91(5):547–557

    Article  CAS  Google Scholar 

  22. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220(4601):1049–1051

    Article  CAS  Google Scholar 

  23. Bennett MD, Price HJ, Johnston JS (2007) Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry. Ann Bot 101(6):777–790

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl E. Hjelmen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Johnston, J.S., Bernardini, A., Hjelmen, C.E. (2019). Genome Size Estimation and Quantitative Cytogenetics in Insects. In: Brown, S., Pfrender, M. (eds) Insect Genomics. Methods in Molecular Biology, vol 1858. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8775-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8775-7_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8774-0

  • Online ISBN: 978-1-4939-8775-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics