Skip to main content

Fluorescence Correlation and Cross-Correlation Spectroscopy in Zebrafish

  • Protocol
  • First Online:
Morphogen Gradients

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1863))

Abstract

There has been increasing interest in biophysical studies on live organisms to gain better insights into physiologically relevant biological events at the molecular level. Zebrafish (Danio rerio) is a viable vertebrate model to study such events due to its genetic and evolutionary similarities to humans, amenability to less invasive fluorescence techniques owing to its transparency and well-characterized genetic manipulation techniques. Fluorescence techniques used to probe biomolecular dynamics and interactions of molecules in live zebrafish embryos are therefore highly sought-after to bridge molecular and developmental events. Fluorescence correlation and cross-correlation spectroscopy (FCS and FCCS) are two robust techniques that provide molecular level information on dynamics and interactions respectively. Here, we detail the steps for applying confocal FCS and FCCS, in particular single-wavelength FCCS (SW-FCCS), in live zebrafish embryos, beginning with sample preparation, instrumentation, calibration, and measurements on the FCS/FCCS instrument and ending with data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 07 December 2018

    The book was published with the following errors: In Chapter 1, figure 1 was stretched. This misconfiguration has now been modified.

References

  1. Magde D, Elson EL, Webb WW (1972) Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29:705–708

    Article  CAS  Google Scholar 

  2. Elson EL, Magde D (1974) Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Biopolymers 13:1–27

    Article  CAS  Google Scholar 

  3. Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13:29–61

    Article  CAS  PubMed  Google Scholar 

  4. Pramanik A, Olsson M, Langel Ü et al (2001) Fluorescence correlation spectroscopy detects galanin receptor diversity on insulinoma cells. Biochemistry 40:10839–10845

    Article  CAS  PubMed  Google Scholar 

  5. Pramanik A, Rigler R (2001) Ligand-receptor interactions in the membrane of cultured cells monitored by fluorescence correlation spectroscopy. Biol Chem 382:371–378

    Article  CAS  PubMed  Google Scholar 

  6. Meissner O, Häberlein H (2003) Lateral mobility and specific binding to GABAA receptors on hippocampal neurons monitored by fluorescence correlation spectroscopy. Biochemistry 42:1667–1672

    Article  CAS  PubMed  Google Scholar 

  7. Pick H, Preuss AK, Mayer M et al (2003) Monitoring expression and clustering of the ionotropic 5HT3 receptor in plasma membranes of live biological cells. Biochemistry 42:877–884

    Article  CAS  PubMed  Google Scholar 

  8. Herrick-Davis K, Grinde E, Cowan A, Mazurkiewicz JE (2013) Fluorescence correlation spectroscopy analysis of serotonin, adrenergic, muscarinic, and dopamine receptor dimerization: the oligomer number puzzle. Mol Pharmacol 84:630–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Saito K, Ito E, Takakuwa Y et al (2003) In situ observation of mobility and anchoring of PKCβI in plasma membrane. FEBS Lett 541:126–131

    Article  CAS  PubMed  Google Scholar 

  10. White MD, Angiolini JF, Alvarez YD et al (2016) Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo. Cell 165:75–87

    Article  CAS  PubMed  Google Scholar 

  11. Yu SR, Burkhardt M, Nowak M et al (2009) Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 461:533–536

    Article  CAS  Google Scholar 

  12. Petrášek Z, Hoege C, Hyman AA, Schwille P (2008) Two-photon fluorescence imaging and correlation analysis applied to protein dynamics in C. elegans embryo. Proc SPIE 6860:68601L

    Article  CAS  Google Scholar 

  13. Petrášek Z, Hoege C, Mashaghi A et al (2008) Characterization of protein dynamics in asymmetric cell division by scanning fluorescence correlation spectroscopy. Biophys J 95:5476–5486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Abu-Arish A, Porcher A, Czerwonka A et al (2010) High mobility of bicoid captured by fluorescence correlation spectroscopy: implication for the rapid establishment of its gradient. Biophys J 99:L33–L35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Teh C, Sun G, Shen H et al (2015) Modulating the expression level of secreted Wnt3 influences cerebellum development in zebrafish transgenics. Development 142:3721–3733

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Wang X, Wohland T, Sampath K (2016) Extracellular interactions and ligand degradation shape the nodal morphogen gradient. eLife 5:e13879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Howe K, Clark MD, Torroja CF et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rasooly RS, Henken D, Freeman N et al (2003) Genetic and genomic tools for zebrafish research: the NIH zebrafish initiative. Dev Dyn 228:490–496

    Article  CAS  PubMed  Google Scholar 

  19. Veldman MB, Lin S (2008) Zebrafish as a developmental model organism for pediatric research. Pediatr Res 64:470–476

    Article  PubMed  Google Scholar 

  20. Weber T, Köster R (2013) Genetic tools for multicolor imaging in zebrafish larvae. Methods 62:279–291

    Article  CAS  PubMed  Google Scholar 

  21. Shi X, Teo LS, Pan X et al (2009) Probing events with single molecule sensitivity in zebrafish and Drosophila embryos by fluorescence correlation spectroscopy. Dev Dyn 238:3156–3167

    Article  CAS  PubMed  Google Scholar 

  22. Henion PD, Raible DW, Beattie CE et al (1996) Screen for mutations affecting development of Zebrafish neural crest. Dev Genet 18:11–17

    Article  CAS  PubMed  Google Scholar 

  23. Lister J, Robertson C, Lepage T et al (1999) nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development 126:3757–3767

    CAS  PubMed  Google Scholar 

  24. Antinucci P, Hindges R (2016) A crystal-clear zebrafish for in vivo imaging. Sci Rep 6:29490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karlsson J, von Hofsten J, Olsson P-E (2001) Generating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development. Mar Biotechnol 3:522–527

    Article  CAS  PubMed  Google Scholar 

  26. Benninger RKP, Piston DW (2013) Two-photon excitation microscopy for the study of living cells and tissues. Curr Protoc Cell Biol. Chapter 4 Unit 4:11.1–24

    Google Scholar 

  27. Leroux C-E, Wang I, Derouard J, Delon A (2011) Adaptive optics for fluorescence correlation spectroscopy. Opt Express 19:26839–26849

    Article  PubMed  Google Scholar 

  28. Leroux C-E, Monnier S, Wang I et al (2014) Fluorescent correlation spectroscopy measurements with adaptive optics in the intercellular space of spheroids. Biomed Opt Express 5:3730–3738

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pan X, Yu H, Shi X et al (2007) Characterization of flow direction in microchannels and zebrafish blood vessels by scanning fluorescence correlation spectroscopy. J Biomed Opt 12:14034

    Article  Google Scholar 

  30. Korzh S, Pan X, Garcia-Lecea M et al (2008) Requirement of vasculogenesis and blood circulation in late stages of liver growth in zebrafish. BMC Dev Biol 8:84

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ng XW, Teh C, Korzh V, Wohland T (2016) The secreted signaling protein Wnt3 is associated with membrane domains in vivo: a SPIM-FCS study. Biophys J 111:418–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wawrezinieck L, Rigneault H, Marguet D, Lenne P-F (2005) Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys J 89:4029–4042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ng XW, Bag N, Wohland T (2015) Characterization of lipid and cell membrane organization by the fluorescence correlation spectroscopy diffusion law. Chimia 69:112–119

    Article  CAS  PubMed  Google Scholar 

  34. Sezgin E, Azbazdar Y, Ng XW et al (2017) Binding of canonical Wnt ligands to their receptor complexes occurs in ordered plasma membrane environments. FEBS J 284:2513–2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schwille P, Meyer-Almes F-J, Rigler R (1997) Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. Biophys J 72:1878–1886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bacia K, Schwille P (2007) Practical guidelines for dual-color fluorescence cross-correlation spectroscopy. Nat Protoc 2:2842–2856

    Article  CAS  PubMed  Google Scholar 

  37. Hwang LC, Wohland T (2004) Dual-color fluorescence cross-correlation spectroscopy using single laser wavelength excitation. ChemPhysChem 5:549–551

    Article  CAS  PubMed  Google Scholar 

  38. Liu P, Sudhaharan T, Koh RML et al (2007) Investigation of the dimerization of proteins from the epidermal growth factor receptor family by single wavelength fluorescence cross-correlation spectroscopy. Biophys J 93:684–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Foo YH, Naredi-Rainer N, Lamb DC et al (2012) Factors affecting the quantification of biomolecular interactions by fluorescence cross-correlation spectroscopy. Biophys J 102:1174–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schwille P, Heinze KG (2001) Two-photon fluorescence cross-correlation spectroscopy. ChemPhysChem 2:269–272

    Article  CAS  PubMed  Google Scholar 

  41. Kim SA, Heinze KG, Waxham MN, Schwille P (2004) Intracellular calmodulin availability accessed with two-photon cross-correlation. Proc Natl Acad Sci U S A 101:105–110

    Article  CAS  PubMed  Google Scholar 

  42. Kim SA, Heinze KG, Bacia K et al (2005) Two-photon cross-correlation analysis of intracellular reactions with variable stoichiometry. Biophys J 88:4319–4336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Swift JL, Heuff R, Cramb DT (2006) A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots. Biophys J 90:1396–1410

    Article  CAS  PubMed  Google Scholar 

  44. Hwang LC, Wohland T (2007) Recent advances in fluorescence cross-correlation spectroscopy. Cell Biochem Biophys 49:1–13

    Article  CAS  PubMed  Google Scholar 

  45. Müller BK, Zaychikov E, Bräuchle C, Lamb DC (2005) Pulsed interleaved excitation. Biophys J 89:3508–3522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Macháň R, Kapusta P, Hof M (2014) Statistical filtering in fluorescence microscopy and fluorescence correlation spectroscopy. Anal Bioanal Chem 406:4797–4813

    Article  CAS  PubMed  Google Scholar 

  47. Yavas S, Macháň R, Wohland T (2016) The epidermal growth factor receptor forms location-dependent complexes in resting cells. Biophys J 111:2241–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krieger JW, Singh AP, Garbe CS et al (2014) Dual-color fluorescence cross-correlation spectroscopy on a single plane illumination microscope (SPIM-FCCS). Opt Express 22:2358–2375

    Article  PubMed  Google Scholar 

  49. Krieger JW, Singh AP, Bag N et al (2015) Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms. Nat Protoc 10:1948–1974

    Article  CAS  PubMed  Google Scholar 

  50. Szalóki N, Krieger JW, Komáromi I et al (2015) Evidence for homodimerization of the c-Fos transcription factor in live cells revealed by FRET, SPIM-FCCS and MD-modeling. Mol Cell Biol 35:3785–3798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pernuš A, Langowski J (2015) Imaging Fos-Jun transcription factor mobility and interaction in live cells by single plane illumination-fluorescence cross correlation spectroscopy. PLoS One 10:e0123070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ma X, Foo YH, Wohland T (2014) Fluorescence cross-correlation spectroscopy (FCCS) in living cells. In: Engelborghs Y, Visser AJWG (eds) Fluorescence spectroscopy and microscopy. Methods and protocols, Methods in molecular biology. Humana Press, Totowa, NJ, pp 557–573

    Chapter  Google Scholar 

  53. Shi X, Yong HF, Sudhaharan T et al (2009) Determination of dissociation constants in living zebrafish embryos with single wavelength fluorescence cross-correlation spectroscopy. Biophys J 97:678–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sengupta P, Balaji J, Maiti S (2002) Measuring diffusion in cell membranes by fluorescence correlation spectroscopy. Methods 27:374–387

    Article  CAS  PubMed  Google Scholar 

  55. Pan X, Foo W, Lim W et al (2007) Multifunctional fluorescence correlation microscope for intracellular and microfluidic measurements. Rev Sci Instrum 78:53711

    Article  CAS  Google Scholar 

  56. Shi X, Foo YH, Korzh V et al (2010) Applications of fluorescence correlation spectroscopy in living zebrafish embryos. In: Karuna S, Sudipto R (eds) Live imaging zebrafish – insights into development and disease. World Scientific Publishing, Singapore, pp 69–103

    Chapter  Google Scholar 

  57. Higashijima S, Okamoto H, Ueno N et al (1997) High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. Dev Biol 192:289–299

    Article  CAS  PubMed  Google Scholar 

  58. Burket CT, Montgomery JE, Thummel R et al (2008) Generation and characterization of transgenic zebrafish lines using different ubiquitous promoters. Transgenic Res 17:265–279

    Article  CAS  PubMed  Google Scholar 

  59. Peterson SM, Freeman JL (2009) RNA isolation from embryonic zebrafish and cDNA synthesis for gene expression analysis. J Vis Exp (30):1–5

    Google Scholar 

  60. Westerfield M (2000) The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio), 4th edn. University of Oregon Press, Eugene

    Google Scholar 

  61. Linney E, Dobbs-McAuliffe B, Sajadi H, Malek RL (2004) Microarray gene expression profiling during the segmentation phase of zebrafish development. Comp Biochem Physiol C 138:351–362

    Google Scholar 

  62. Stainier DY, Lee RK, Fishman MC (1993) Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 119:31–40

    CAS  PubMed  Google Scholar 

  63. Malone MH, Sciaky N, Stalheim L et al (2007) Laser-scanning velocimetry: a confocal microscopy method for quantitative measurement of cardiovascular performance in zebrafish embryos and larvae. BMC Biotechnol 7:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rüttinger S, Buschmann V, Krämer B et al (2008) Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy. J Microsc 232:343–352

    Article  PubMed  Google Scholar 

  65. Kapusta P (2010) Absolute diffusion coefficients: compilation of reference data for FCS calibration. PicoQuant Appl Note 0–1

    Google Scholar 

  66. Hess ST, Webb WW (2002) Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. Biophys J 83:2300–2317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gregor I, Patra D, Enderlein J (2005) Optical saturation in fluorescence correlation spectroscopy under continuous-wave and pulsed excitation. ChemPhysChem 6:164–170

    Article  CAS  PubMed  Google Scholar 

  68. Nagy A, Wu J, Berland KM (2005) Characterizing observation volumes and the role of excitation saturation in one-photon fluorescence fluctuation spectroscopy. J Biomed Opt 10:44015

    Article  PubMed  Google Scholar 

  69. Buschmann V, Krämer B, Koberling F, et al (2009) Quantitative FCS: determination of the confocal volume by FCS and bead scanning with the MicroTime 200. PicoQuant Appl Note 1–8

    Google Scholar 

  70. Sun G, Guo S-M, Teh C et al (2015) Bayesian model selection applied to the analysis of fluorescence correlation spectroscopy data of fluorescent proteins in vitro and in vivo. Anal Chem 87:4326–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Koppel DE (1974) Statistical accuracy in fluorescence correlation spectroscopy. Phys Rev A 10:1938–1945

    Article  Google Scholar 

  72. Mütze J, Ohrt T, Schwille P (2011) Fluorescence correlation spectroscopy in vivo. Laser Photon Rev 5:52–67

    Article  CAS  Google Scholar 

  73. Rigler R, Mets Ü, Widengren J, Kask P (1993) Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion. Eur Biophys J 22:169–175

    Article  CAS  Google Scholar 

  74. Müller P, Schwille P, Weidemann T (2014) PyCorrFit-generic data evaluation for fluorescence correlation spectroscopy. Bioinformatics 30:2532–2533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sezgin E, Schwille P (2011) Fluorescence techniques to study lipid dynamics. Cold Spring Harb Perspect Biol 3:a009803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim SA, Heinze KG, Schwille P (2007) Fluorescence correlation spectroscopy in living cells. Nat Methods 4:963–973

    Article  CAS  PubMed  Google Scholar 

  77. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  78. Kapusta P, Wahl M, Benda A, et al (2006) Fluorescence lifetime correlation spectroscopy. PicoQuant Appl Note 1–4

    Google Scholar 

  79. Wahl M (2014) Time-correlated single photon counting. PicoQuant Tech Note 1–14

    Google Scholar 

  80. Becker W (2017) The bh TCSPC handbook, 7th edn. Becker & Hickl GmbH, Berlin

    Google Scholar 

  81. Enderlein J, Gregor I (2005) Using fluorescence lifetime for discriminating detector afterpulsing in fluorescence-correlation spectroscopy. Rev Sci Instrum 76:33102

    Article  CAS  Google Scholar 

  82. Kapusta P, Macháň R, Benda A, Hof M (2012) Fluorescence lifetime correlation spectroscopy (FLCS): concepts, applications and outlook. Int J Mol Sci 13:12890–12910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Meseth U, Wohland T, Rigler R, Vogel H (1999) Resolution of fluorescence correlation measurements. Biophys J 76:1619–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. He J, Guo S-M, Bathe M (2012) Bayesian approach to the analysis of fluorescence correlation spectroscopy data I: Theory. Anal Chem 84:3871–3879

    Article  CAS  PubMed  Google Scholar 

  85. Guo S-M, He J, Monnier N et al (2012) Bayesian approach to the analysis of fluorescence correlation spectroscopy data II: Application to simulated and in vitro data. Anal Chem 84:3880–3888

    Article  CAS  PubMed  Google Scholar 

  86. Kohl T, Haustein E, Schwille P (2005) Determining protease activity in vivo by fluorescence cross-correlation analysis. Biophys J 89:2770–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen Y, Müller JD, So PTC, Gratton E (1999) The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys J 77:553–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Macdonald PJ, Johnson J, Chen Y, Mueller JD (2014) Brightness experiments. In: Engelborghs Y, Visser AJWG (eds) Fluorescence spectroscopy and microscopy. Methods and protocols, Methods in molecular biology. Humana Press, Totowa, NJ, pp 699–718

    Chapter  Google Scholar 

  89. Xu Q (1999) Microinjection into zebrafish embryos. In: Guille M (ed) Molecular methods in developmental biology. Xenopus and zebrafish, Methods in molecular biology. Humana Press, Totowa, NJ, pp 125–132

    Chapter  Google Scholar 

  90. Holder N, Xu Q (1999) Microinjection of DNA, RNA, and protein into the fertilized zebrafish egg for analysis of gene function. In: Sharpe Ivor Mason PT (ed) Molecular embryology. Methods and protocols, Methods in molecular biology, pp 487–490

    Chapter  Google Scholar 

  91. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292

    Article  CAS  PubMed  Google Scholar 

  92. Rosen JN, Sweeney MF, Mably JD (2009) Microinjection of zebrafish embryos to analyze gene function. J Vis Exp 25:e1115

    Google Scholar 

  93. Benda A, Beneš M, Mareček V et al (2003) How to determine diffusion coefficients in planar phospholipid systems by confocal fluorescence correlation spectroscopy. Langmuir 19:4120–4126

    Article  CAS  Google Scholar 

  94. Humpolícková J, Gielen E, Benda A et al (2006) Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy. Biophys J 91:L23–L25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Weiß K, Enderlein J (2012) Lipid diffusion within black lipid membranes measured with dual-focus fluorescence correlation spectroscopy. ChemPhysChem 13:990–1000

    Article  CAS  PubMed  Google Scholar 

  96. Heinemann F, Betaneli V, Thomas FA, Schwille P (2012) Quantifying lipid diffusion by fluorescence correlation spectroscopy: a critical treatise. Langmuir 28:13395–13404

    Article  CAS  PubMed  Google Scholar 

  97. Cranfill PJ, Sell BR, Baird MA et al (2016) Quantitative assessment of fluorescent proteins. Nat Methods 13:557–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Macháň R, Foo YH, Wohland T (2016) On the equivalence of FCS and FRAP: simultaneous lipid membrane measurements. Biophys J 111:152–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Landgraf D, Okumus B, Chien P et al (2012) Segregation of molecules at cell division reveals native protein localization. Nat Methods 9:480–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Gahlmann A, Moerner WE (2014) Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. Nat Rev Microbiol 12:9–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Katayama H, Yamamoto A, Mizushima N et al (2008) GFP-like proteins stably accumulate in lysosomes. Cell Struct Funct 33:1–12

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

X.W.N. is supported by the NUS graduate research scholarship. T.W. acknowledges funding by the Ministry of Education of Singapore (grant number MOE2016-T3-1-005). Work in the laboratory of K.S. is supported by Warwick Medical School and the BBSRC. K.S. thanks Andreas Zaucker and Scott Clarke for the image of the experimental setup for mounting zebrafish embryos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Wohland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ng, X.W., Sampath, K., Wohland, T. (2018). Fluorescence Correlation and Cross-Correlation Spectroscopy in Zebrafish. In: Dubrulle, J. (eds) Morphogen Gradients. Methods in Molecular Biology, vol 1863. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8772-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8772-6_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8771-9

  • Online ISBN: 978-1-4939-8772-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics